Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.
SOME INSECTS

INJURIOUS TO GARDEN AND ORCHARD CROPS.

A SERIES OF ARTICLES DEALING WITH INSECTS
OF THIS CLASS.

PREPARED UNDER THE DIRECTION OF THE ENTOMOLOGIST,

BY

F. H. CHITTENDEN,
ASSISTANT ENTOMOLOGIST.

WASHINGTON:
GOVERNMENT PRINTING OFFICE.
1899.
DIVISION OF ENTOMOLOGY.

Entomologist: L. O. Howard.
Artist: Miss L. Sullivan.
SOME INSECTS

INJURIOUS TO GARDEN AND ORCHARD CROPS.

A SERIES OF ARTICLES DEALING WITH INSECTS OF THIS CLASS.

PREPARED UNDER THE DIRECTION OF THE ENTOMOLOGIST,

BY

F. H. CHITTENDEN,
ASSISTANT ENTOMOLOGIST.

WASHINGTON:
GOVERNMENT PRINTING OFFICE.
1899.
LETTER OF TRANSMITTAL.

U. S. DEPARTMENT OF AGRICULTURE,
DIVISION OF ENTOMOLOGY,
Washington, D. C., January 21, 1899.

Sir: I have the honor to transmit herewith manuscript of a bulletin containing certain articles upon insects injurious to garden and orchard crops, which has been prepared by F. H. Chittenden, of this office. The articles all concern insects of very considerable economic importance and derive an especial value from the fact that they are, with few exceptions, based upon original observations made in the vicinity of Washington. The worker on economic entomology will find very many hitherto unreported facts concerning the life histories of the species treated, and the vegetable grower and orchardist will find many valuable practical points based upon this more intimate knowledge of the life histories of the insects. Seventeen of the twenty figures are here published for the first time.

I recommend the publication of this manuscript as Bulletin No. 19, New Series.

Respectfully,

L. O. Howard,
Entomologist.

Hon. James Wilson,
Secretary of Agriculture.
CONTENTS.

Page.

PREFACE .. 9

The Squash Ladybird; its Literature and Biology (illustrated) 11

Life History of the Common Squash Bug (Anasa tristis DeG.) (illustrated). 20

The Horned Squash Bug (Anasa armigera Say) (illustrated)......................... 28

Some Observations in the Life History of the Squash-vine Borer
(Melittia satyriformis Hbn.) (illustrated) .. 34

Notes on the Pickle Worm and Melon Caterpillar ... 41

The pickle worm (Margaronia nitidalis Cram.) .. 41

The melon caterpillar (Margaronia hyalinata Linn.) ... 42

Leaf-footed Plant-Bugs which attack Cucurbits (illustrated) 44

The Northern leaf-footed plant-bug (Leptoglossus oppositus Say) 44

The banded leaf-footed plant-bug (Leptoglossus phyllopus Linn.) 46

Notes on the Striped Cucumber Beetle (Diabrotica vittata Fab.) (illustrated) 48

A new Webworm Enemy of Cabbage and other Cruciferous Plants
(illustrated) .. 51

Notes on the Garden Flea-hopper (Halticus uhleri Giard) (illustrated) 57

The Imbricated Snout-beetle (Epicerus imbricatus Say) (illustrated) 62

The Brown Fruit-chaffer (Euphoria inda Linn.) (illustrated) 67

Biologic Notes on the May Beetle (Lachnosterna arcuata Sm.) (illustrated). 74

The arcuate May beetle (Lachnosterna arcuata Sm.) 75

Insect enemies of white grubs ... 79

The Spinach Flea-beetle (Disonycha xanthomelcena Dalrn.) (illustrated) 80

Biologic and other Notes on the Flea-beetles which attack Solanaceous
Plants (illustrated) .. 85

The tobacco flea-beetle (Epitrix parvula Fab.) ... 85

The eggplant flea-beetle (Epitrix fuscula Cr.) .. 87

The cucumber flea-beetle (Epitrix cucumeris Harr.) .. 89

Other species of Epitrix ... 90

The Cherry Leaf-beetle (Galernocella caricollis Lec.) 90

Notes on the Plum and Rose Leaf-beetles .. 93

The plum leaf-beetle (Nodonota tristis Ol.) ... 93

The rose leaf-beetle (Nodonota puncticollis Say) ... 95

Notes on the Fruit-tree Bark-beetle and other Borers Affecting
Fruit Trees ... 96

The fruit-tree bark-beetle (Scolytus rugulosus Ratz.) 96

The banded hickory borer (Chion cinctus Dru.) .. 97

The grape cane-borer (Amphicerus bicaudatus Say) .. 98

The eye-spotted apple-twig borer (Oberea ocellata Hald.) 98
ILLUSTRATIONS.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Epilachna borealis: larva, pupa, beetle, and egg</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Work of Epilachna borealis</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Egg of Anasa tristis</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>Nymphs of Anasa tristis</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>Anasa tristis: adult sexual characters, etc</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>Anasa armigera: different stages</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>Melittia satyriniformis: eggs and immature larvae</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>Melittia satyriniformis: moth, larva, pupa, etc</td>
<td>36</td>
</tr>
<tr>
<td>9</td>
<td>Leptoglossus oppositus: adult</td>
<td>44</td>
</tr>
<tr>
<td>10</td>
<td>Leptoglossus phyllopus: adult</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>Egg of Diabrotica vittata and sculpture</td>
<td>48</td>
</tr>
<tr>
<td>12</td>
<td>Hellula undalis: moth, larva, and pupa</td>
<td>54</td>
</tr>
<tr>
<td>13</td>
<td>Halicus uhreri: sexes, etc</td>
<td>60</td>
</tr>
<tr>
<td>14</td>
<td>Epicerus imbricatus: beetle, young larvae, and eggs</td>
<td>62</td>
</tr>
<tr>
<td>15</td>
<td>Euphoria inda: beetle and preparatory stages</td>
<td>68</td>
</tr>
<tr>
<td>16</td>
<td>Lachnosterna arcuata: beetle and preparatory stages</td>
<td>74</td>
</tr>
<tr>
<td>17</td>
<td>Lachnosterna arcuata: sexual characters</td>
<td>75</td>
</tr>
<tr>
<td>18</td>
<td>Lachnosterna fusca: sexual characters</td>
<td>75</td>
</tr>
<tr>
<td>19</td>
<td>Disonyma xanthomelana: beetle and preparatory stages</td>
<td>81</td>
</tr>
<tr>
<td>20</td>
<td>Epitrix cucumeris: adult beetle</td>
<td>89</td>
</tr>
</tbody>
</table>
PREFACE.

Under the comprehensive title, Some Insects Injurious to Garden and Orchard Crops, the writer has brought together a series of articles bearing upon insects of this class. These are in continuation of work begun in previous years, the results of which have found expression in Bulletin No. 10, in the Yearbooks for 1896 and 1898, and elsewhere, and are based upon observations conducted, for the most part, during the year 1898. At the same time there has been added, from the notes that have accumulated by correspondence and otherwise in this office, as matters of record, much that is new or unpublished concerning the food and other habits as well as the distribution of the species of insects considered.

In connection with the topics that are dealt with somewhat at length, the matter of remedies and other methods of control has received due consideration. The fact that this bulletin is to a certain extent a popular-scientific one has suggested the wisdom, as a means of enhancing its value to the practical worker, of the addition of a brief summary of remedies to articles that take the form of notes or incomplete accounts.

Late in the season of 1897 the subject of the insects affecting cucurbit crops was taken up as a specialty, and seven of the topics here discussed treat of this class of insects. In the course of investigations conducted in Maryland and Virginia and in the District of Columbia in the vicinity of Washington, the squash ladybird often came under observation, and it was found that a number of points of interest were omitted by earlier writers, and these, together with some descriptive and other notes necessary to the completion of the account, are brought together in connection with the illustrations as the initial subject of the bulletin. The life history of the common squash bug, *Anasa tristis*, although a well-known pest nearly everywhere, has not previously, to the writer's knowledge, been studied at all fully. The allied *Anasa armigera* has for the first time come under observation during the past two years as a species of economic importance, and has received attention in the same manner as its more common congener. The remaining four articles on cucurbit pests contain more or less information that has not previously been made public.

One of the most interesting of the injurious occurrences of the year 1898 was the discovery of an insect that is apt to prove of great economic importance in the course of time. This is an imported webworm, *Helulula undalis*, and it is at present troublesome to cabbage, turnip, and other cruciferous crops in the neighborhood of Augusta, Ga. The cultivation of these crops has been for many years a matter of extreme
difficulty in many sections, and in very recent years a complete failure in the District of Columbia and in many parts of Maryland, and the addition of a new pest from abroad is most unwelcome.

The study of Halticus uhleri is an outgrowth of investigations on insects affecting beans and peas. This species, though scarcely more than a second-rate pest, is deserving of further study as regards its life habits and the methods to be used in its control.

Some observations were made bearing upon the early life history of the imbricated snout-beetle, Epiceraeus imbricatus, but attempts to rear the larvae were not successful. The observations which are here recorded, however, are of considerable interest, especially as regards the egg-laying of this species.

Rather remarkable success was attained in the study of the fruit-chaffer, Euphoria inda, which was carried successfully through all its stages. The results demonstrate for all practical purposes that this species is not injurious except in the adult condition; a fact that has previously been surmised, but which had not been brought out with sufficient clearness in earlier investigations.

Nothing of a biologic nature has hitherto been published concerning one of our two commonest May beetles, Lachnosterna arcuata, which is here described and illustrated in its immature stages for the first time. Its life history is also given somewhat in detail, as well as notes bearing on its life habits and economy.

The unusual abundance of Disonycha xanthomelaena, the spinach flea-beetle, the past year led to a special study of this species, resulting in the discovery of a new food plant and the completion of its life history.

The article on the flea-beetles which attack tobacco, the potato and other solanaceous plants is a continuation of observations begun in 1897 and published in Bulletin No. 10.

The cherry leaf-beetle, Galerucella caviollis, is one of the species which has been prominent as a pest during the last year, and has received in consequence some study. Until the past season it has not been injurious to the peach.

The article on the plum and rose leaf-beetles is in continuation of studies begun in previous years; which is true of the notes which are here presented on the fruit-tree bark-beetle and other fruit-tree borers.

It should be added, for the benefit of the bibliographer, that the title of this bulletin is simply assumed for convenience, and that, although each separate account is not signed by the author, each should properly be indexed separately, as each article is in itself complete, having no special bearing on either what precedes or follows it in the order of publication.

The illustrations were for the most part prepared from selected fresh material and, with a single exception, especially drawn or otherwise adapted for this work.

F. H. C.
SOME INSECTS INJURIOUS TO GARDEN AND ORCHARD CROPS.

THE SQUASH LADYBIRD; ITS LITERATURE AND BIOLOGY.

In the course of the investigations of the insect enemies of cucurbit crops, the squash ladybird (*Epilachna borealis* Fab.) has come under observation on numerous occasions. All of the different stages of the species have been described more or less fully by different writers; some few slight details in the life economy of the insect remained to be more fully studied, however, and in looking through the early literature of the species so much has been found of interest that has obvi-

![Fig. 1 - Epilachna borealis: a, larva; b, pupa; c, adult beetle; d, egg; e, surface of same—a, b, c, three times natural size; d, four times; e, highly magnified (original).](image)

ously escaped the attention of some of the later writers, that mention is here made of it. Illustrations of the insect in its various stages and of its work are also presented, together with brief mention of its chief characteristics, its habits, and its distribution. As the bibliography has not hitherto been brought together, a list of the principal economic writings has been compiled and is appended.

GENERAL APPEARANCE AND DISTRIBUTION.

For the benefit of those who are not perfectly familiar with this insect and to facilitate its recognition with the aid of the illustrations, a brief description of its several stages is given as a preliminary.

The beetle is of the characteristic hemispherical form of ladybirds, ochraceous in color, with the dorsal surface marked with rounded black
spots, as shown in the illustration (fig. 1, c). The prothorax bears normally four spots, and each elytron has seven. The eyes, tips of mandibles, and metasternum are also black. The beetle measures about a third of an inch (8mm), its length being about a fifth longer than its width (5.5mm). The egg is yellow, about three-tenths of an inch (1.5mm) long and of the elongate subcylindrical form illustrated at d. Its surface is somewhat pulvulent and sculptured as shown, highly magnified, at e. Eggs are deposited, usually in irregular clusters of from half a dozen to fifty or more, on the under surface of a leaf. In two large bunches observed 51 and 52 eggs were counted. The larva is yellow, like the eggs, and even when first hatched is covered with spines, arranged in six rows except on the first thoracic segment, where there are only four. A mature larva with its spiny armament is figured at a. The pupa, also yellow, is shown at b.

The species is indigenous to America and ranges from Maine and Canada in the north to the Gulf States. It is essentially an eastern form, occurring in the United States most abundantly along the Atlantic seaboard, and does not appear to be injurious west of the Mississippi River, although its occurrence has been reported in Kansas and Minnesota. It is also recorded by different writers from Mexico, Cuba, and the Antilles; Guatemala, Honduras and British Honduras; Nicaragua, Costa Rica, Panama, Colombia, Argentina, and Brazil.

The genus is tropical, all of the three species which are found in the United States being also native to Mexico, where the present species is widely distributed. In the latter country and Central America, the center of greatest abundance of the genus, many more species are known. The genus is remarkable as being the only one known in the great family Coccinellidae, which is strictly herbivorous in all stages.

Judging by published accounts, personal inquiry and experience, this species is most troublesome in the following States, mentioned in approximate order of importance: New Jersey, New York (Long Island), Maryland, Alabama, Virginia, Pennsylvania, Connecticut, Massachusetts, and Georgia. It is also destructive, according to Mr. G. C. Champion, in Central America.

During the season of 1897 this species was observed to be present in destructive abundance only in one locality visited, at Glen Echo, Md., where it was found upon cucumber and melon as well as on squash, but by far more injurious upon the latter plant. In 1898 it was very generally injurious in Maryland and Virginia in the vicinity of the District of Columbia. It occurred in destructive numbers in nearly every field of cucurbits visited. The list of localities where it was observed includes the District of Columbia, on our experimental plat where the species probably survived the winter from specimens used in rearing experiments the year before; at Kensington, College Station, Poolesville, and Marshall Hall, Md.; Colonial Beach, and Norfolk, Va. In the last-mentioned locality it was reported very injurious by Dr. E. F. Smith, of this Department. It was destructive in the entire neighborhood of Norfolk.
THE SQUASH LADYBIRD.

COMMON NAMES AND SYNONYMY.

Quite a variety of English names have been applied to this species, each writer having seemingly bestowed upon it an appellation of his own coinage. Thus we have: Northern ladybird, boreal ladybird, boreal ladybird beetle, herbivorous lady bug, squash coccinella, spotted squash bug, and pumpkin beetle. The name of squash ladybird is adopted as more suitable than boreal or northern ladybird, either of which is peculiarly inappropriate. Considering the fact that the species abounds in the tropics, belonging to a neo-tropical genus, and that there are several Coccinellids with a more northern range than this.

In our American literature this species is always mentioned under the specific name of borealis, either as Coccinella or Epilachna. It has also been described, from Central and South America, under other names, of which the following are recognized by Rev. H. S. Gorham as synonyms (Biol. Centr. Amer., Col., vol. VII, p. 241, Jan., 1898): C. immaculicolis Chevr., E. equinoctialis Muls., E. particollis Muls., C. 13-notata Latr., E. distincta Weise. Of these equinoctialis, immaculicolis, and distincta are well-marked color variations.

FOOD PLANTS.

The squash ladybird, as might be gathered from its name, is particularly fond of squash, upon which it feeds as larva and beetle. It may be found often in some abundance on the leaves of pumpkin, whence one of its vernacular names, pumpkin beetle, also on cantaloupe, watermelon, and cucumber, and it has two natural or wild food plants in the prickly cucumber or wild balsam apple (Echinocystis lobata) and the one-seeded bur cucumber (Sieyos angulatus). The larva feeds almost exclusively on the lower surface of a leaf, consuming the lower epidermis and parenchyma and leaving the upper integument, veins, and nervures more or less intact. The beetles feed by preference on the upper surface, although they may often be found on the under side, and devour all parts of a leaf except the veins.

The habit of this species of feeding in free exposure on the upper surface of leaves has been noticed by all who have studied it. This is its feeding habit, but during the heat of midday the beetles seek concealment under the shade of the leaves on the stems, and in other places where they are not so readily noticed. As the sun gets low, however, and a portion of their food plant is protected by shade, they come out in numbers. During the middle of July they have been noticed in the greatest abundance from between 5 and 6 in the afternoon until dark.

Late in the season the beetles sometimes eat the epidermis of the fruit of cucurbits. The injury to a plant is effected by the work of the larval and adult stages about equally, due to the long period of the latter stage.

Both larvae and adults are slow of movement, the latter being seldom seen in flight.
Epilachna borealis was first described by Fabricius in 1775 (Systema Entomologiae, p. 82, *fide* Gemminger & Harold), and the first public mention of its habits that has come to the writer's notice is a short note in the American Farmer's Encyclopedia, edited by Gouverneur Emerson and published by A. O. Moore in 1858. It is there stated in brief that the leaves of squash are preyed upon by "Coccinella borealis." "Although the genus of insects to which this belongs destroys aphides, there are, as Professor Halderman, of Pennsylvania, observes, a few exceptions, among which is the species named, which may be found in the larva and perfect state, eating the leaves of the squash." Halderman's note, if published, can not be found in any literature at my disposal. This notice was followed by a very good article by Moore in the Country Gentleman for April 1 of the same year. This latter covers two columns and is illustrated with seven crude but fairly good original figures.

The first detailed description of the early stages of the species appears to have been published ten years later by Dr. S. H. Scudder (Amer. Jour. Hort., vol. iii, pp. 80-82, etc.). Shorter notes, however, bearing upon its biology appeared in earlier years. In 1883 Prof. G. H. French also published descriptions of the insect in its different stages, and in 1886 Mr. S. S. Rathbun contributed an interesting article containing some original observations. In more recent years the species was made the subject of special study by Prof. J. B. Smith, of the New Jersey Agricultural Experiment Station.

A list of the principal writings is given as an appendix to the present paper, to which reference may be made for further information.

The curious and perhaps characteristic habit of this genus of lady-birds of feeding within a circumscribed space on a leaf is interesting, but for some reason has not received very general notice by entomologists who have had occasion to write of this insect in recent years. On this head Mr. Moore wrote: "It has a singular habit which I have noticed in no other insect. In feeding, the first act is to mark out with its forceps a circle or semicircle, sometimes of great regularity, inclosing the portion of the leaf on which it is about to feed. The leaf is then eaten within this mark and nowhere else."

The object of the insect in thus "staking out a claim," as some one has termed it, is obviously to secure the wilting of the tissues of the leaf previous to its consumption. A portion of a squash leaf showing the work of this insect is reproduced in figure 2.
Rathvon cites an interesting instance of the capture of "between four and five hundred of these beetles, in the month of March, under the bark of an old tree that stood in a field where corn and pumpkins had been cropped the preceding year. * * * Perhaps fifty of them had crawled out and were basking in the sun."

NOTES ON THE LIFE HISTORY.

The first adults observed in the vicinity of the District of Columbia during the season of 1897 were seen June 25, but there is no doubt that they occur earlier, as beetles are stated to appear near New York City early in June. Newly hatched larvæ were found July 1.

Eggs deposited in confinement June 26 hatched July 3, or in seven days; temperature, 80° F.

To ascertain the other periods of the insect, adults were placed June 26 upon squash vines on our experimental plat, that were free from this insect, and it is presumed that eggs were laid the first day. Of this lot some larvæ had attained full growth by the 18th of July, or in twenty-two days. One individual was noticed to cease feeding at this date and attach itself to a leaf, and the following day it transformed to pupa. From this pupa the first adult of the first brood issued July 25, six days from the time it had transformed to pupa; weather reasonably warm, 84° to 88° F. This gives a period of development as follows: Egg, seven days; larva, sixteen days; pupa, six days—a total of twenty-nine days from egg to beetle.

Writing in 1883, Prof. G. H. French estimated that in Carbondale, Ill., this species has a period from the egg to the imago of thirty-five days. As this insect occurs in colder climates and the minimum midsummer periods of development were not observed, we have for the species an approximate development: For the egg, six to nine days; larva, sixteen to twenty-four days; pupa, six to nine days.

French does not state definitely how many times the larva molts, but as he speaks of four larval periods it is to be presumed that three are assumed. Rathvon, some of whose statements, it must be said, have to be taken cum grano salis, as the data furnished are really insufficient for the establishment of the facts, says: "The larva molts five times (perhaps more)."

NUMBER OF GENERATIONS ANNUALLY.

Experience has shown that if we would have the proper regard for accuracy the statements of many of the earlier writers (and some of the later ones) must not always be interpreted literally. Too often an account of an insect is written in florid style and too frequently conclusions are based upon the most superficial observation. Thus it happens that Moore was led astray when he stated that this insect "may be found upon the squash vine of all ages at once from the first of July to the middle of October, showing that many successive broods are
hatched irregularly through the summer," and Rath von also in his conclusion that there were not less than "three generations annually, although there appeared to be a dozen."

From frequently finding the insect in different stages, early and late, the conclusion that two or more generations were produced each year is only natural. Dr. Smith makes mention of the number of generations in the following words: "Exceptionally, specimens matured early in August may mate and oviposit; but such cases are rare, I believe."

Twenty beetles of the new generation were placed by the writer on a squash plant at Washington, August 7, and covered with netting. After a time, during a severe rain, the covering was removed, and when next examined the beetles had disappeared and no eggs were to be found. Indications are therefore that the species is single-brooded.

EARLY AND LATE OCCURRENCES.

A season's observations met only partial success in the ascertaining of what might naturally be considered matter of easy accomplishment. This exemplifies the futility of drawing conclusions on the entire life history of an insect from a single season's observation in a somewhat limited locality, and yet little better should be anticipated from a species so local and periodical in its attack.

In the first place, a sharp lookout for the first appearing adults resulted in their discovery June 25, within two or three days of their first appearance; yet this date is not so early as that already recorded for New Jersey and southern New York.

Dr. Smith observed in one season in New Jersey that "by the beginning of September all traces of the species had disappeared from the fields." In the season of 1886 the writer saw this insect in great abundance, September 5, on squash near Springlake Beach, N. J., from one to a dozen beetles on a single leaf. Larvae were also present, and pupae were observed as late as September 15.

Here, near Washington, the past season the beetles were noticeably less abundant in September, practically disappearing with the death of their food plants, about the middle of the month. Two stragglers, however, were seen as late as October 6 on a belated watermelon vine.

NATURAL ENEMIES.

In Moore's article an insect is figured and described as in several instances having been found preying upon the larva of this Coccinellid "by inserting its proboscis in the body of the latter and sucking out its contents." The illustration which is given of this insect in the act of destroying its victim is perfectly recognizable as the spined soldier-bug, *Podisus spinosus*, or a closely related species of the same genus, which includes some well-known enemies of leaf-feeding coleopterous larvae. The tachina fly, *Euphorocera claripennis* Macq., has been reared as a parasite of this species, having issued from the larva in August and September.
The beetle exudes the disagreeable and characteristic odor of the ladybird family, and this undoubtedly serves as a measure of defense against predatory birds and other enemies.

SUMMARY OF THE LIFE HISTORY.

The life history of this species as at present known, from the District of Columbia northward, may be summarized as follows:

The insect hibernates in the adult condition under bark or other convenient shelter and appears abroad some time in May or June, the date being subject to considerable variation in different seasons as well as in locality. Egg deposition has been observed in the latter part of June, and there is evidence that eggs are deposited also much later. They hatch in from six to nine days and the larvae begin to feed at once upon the leaves, causing them to wither and die. The exact number of molts of the larva has not been ascertained, but there are evidently either four or five larval periods. The larva attains full development in from two to four weeks, ceases feeding, and attaches itself by its anal extremity to a leaf, and next day sheds its larval skin, which is pushed down toward the end of the body, when the pupa stage is assumed. The larva matures any time from the middle of July to near the middle of September. In the pupa state the insect remains from six to nine days, when the pupal skin separates down the back and the perfect beetle emerges, the new brood appearing as early as the last week of July. After feeding for some time the beetles disappear for hibernation; the date of disappearance beginning about the middle of September, although individuals are occasionally found later.

ECONOMIC STATUS.

Compared with three-score or more of other species of our noxious insects, the squash ladybird is hardly entitled to more than secondary rank. That it is capable, when present in sufficient numbers, of inflicting severe injuries can not be gainsaid, but published records and, more especially, recent investigations go to show that it is only in exceptional seasons and in rather limited areas that the inroads of the larvae and beetles upon the foliage of cucurbits result in material loss. Some reasons for this may be adduced: First and foremost, the species is not particularly prolific. Most injurious insects produce several generations a year. With the present species there is no indication of more than a single brood annually. Second, all stages of the insect occur freely exposed on the plant, and as all are large and conspicuous, they are subject to the attack of other insects and other natural enemies. In spite of the so-called "warning colors" of this insect and of the obnoxious fluid it exudes when disturbed, we know that it has two insect enemies, and probably has several more. Third, the genus is, or at least was, a tropical one, and the species probably reaches its highest development in or near the Torrid zone, and, like other tropical
insects, its hibernation, as already shown by the observations of Rathvon, previously quoted, is not as complete as in the case of boreal species.

There can be little doubt that this beetle sometimes acts as a transmitter of the bacterial wilt of cucurbits the same as is known to be the case with the cucumber beetles and common squash bug, which fact is to its discredit.

The presence of the squash ladybird, although a pest of secondary importance, is certainly not desirable in a field of melons, squashes, or other cucurbits. With the beetles and their larvae devouring the leaves, the larvae of Diabrotica at the roots, or the vine-boring Melittia larva in the stem, and the plant-louse or odoriferous squash bug sapping the vitality of leaves and leaf stalks, this ladybird can not be otherwise than harmful. Only too often several or all of these insects work in unison to the detriment of a plant, hence the suppression of even one of these enemies may sometimes be sufficient to enable the plant to recuperate.

REMEDIES.

Remedial measures that are adopted for other cucurbit pests will at the same time effect the destruction of this ladybird. Its habit of feeding both as larva and adult freely exposed on the leaves renders it peculiarly vulnerable to poisonous applications, and of these the arsenites, either dry or in solution, are the best. Hand-picking of the beetles and egg masses, considering their large and conspicuous appearance, is an easy manner of riddance of the nuisance if employed on the insect's first appearance, and is the only measure necessary under any except unusual circumstances. Both larvae and beetles are decidedly sluggish in habit and hence are easily captured.

PRINCIPAL ECONOMIC WRITINGS.

1. **Fabricius, Joh. C.** <Systema entomologiae, p. 82 (fide Gemm. & Har.), 1775.

 Original description of the species as Coccinella borealis.

2. **Emerson, Gouverneur** <American Farmer's Encyclopaedia, 1858, p. 1012.

 A brief statement that the larva of Coccinella borealis preys upon the leaves of squash.

3. **Moore, A. O.** <Country Gentleman, April 1, 1858, p. 210, figs. 1-7.

 A two-column popular account with seven original figures.

 Larva briefly compared with congeneric species described by Chapuis and Candeze; stated to agree in all essential characters except that there are only three distinct ocelli, the fourth being extremely minute.

Popular half-page account, with apparently original illustration of beetle. Observed in "interior of partially decayed squash" at Barnstable, Mass.

Brief mention, introducing an apparently original figure of the adult.

Description of the larva, pupa, and beetle, with brief notes on the habits of the species in Massachusetts and Connecticut.

Briefly stated to be "very injurious in the Eastern States to the fruit and foliage of the squash."

Answer to correspondent who sent larvae on squash from Philadelphia, Pa.

11. FITCH, ASA. <Illustrated Annual Register of Rural Affairs for 1867-68-69 (1873), v. v, pp. 202-204. Figs.

A short account based upon No. 3; the species stated to be common in southern New York and Connecticut.

Quotes Osten Sacken. A few-line notice.

Describes the egg, larva in four stages, and pupa; on the prickly cucumber, or wild balsam-apple (Echinocystis lobata); habits and periods briefly mentioned.

A general, somewhat detailed, account of four columns, recording some interesting and original observations concerning the life economy of the species, including a new food plant, Sicyos angulatus.

15. SMITH, J. B. <Report New Jersey Agricultural Experiment Station for 1890 (1891), pp. 483-484, fig.

A short account; beetle abundant at Jamesburg, N. J., on pumpkin, etc.; original illustration of larva and adult.

16. LINTNER, J. A. <Seventh Report New York State Entomologist, pp. 310-311. 1891. Fig. (after Emmons).

Quotation from a correspondent at Dosoris, L. I., with brief notes.

Abundance in New Jersey; brief note.

Brief notice of increasing injuriousness in New Jersey; carnivorous tendency of newly hatched larvae.
Short popular account.

A note discussing the relative differences between the mandibular structures of the herbivorous E. borealis and the carnivorous Coccinella 3-notata, illustrated with two original figures.

An epitome of the life history and habits of the species, with three original photographic illustrations of all stages and work.

A six-page illustrated account.

Brief mention of the rarity of the species in New Jersey in 1893.

Short popular economic account, with original figure of beetle. The species stated to be "becoming more and more abundant every year" on the western half of Long Island.

Correspondence with T. C. Dawson, who sends specimens "that are destroying the melon vines" at Wetumpka, Ala.
In addition to the above, brief popular accounts are given in the following text-books: Packard’s Guide to the Study of Insects; Smith’s Economic Entomology; Comstock’s Manual for the Study of Insects. In the last-mentioned publication (p. 536) an original illustration is furnished of the insect in three stages.

LIFE HISTORY OF THE COMMON SQUASH BUG,

Anasa tristis DeG.

THE NUMBER OF STAGES IN HETEROPTERA.

Examination of a lot of *Anasa armigera*, obtained in all stages in the latter days of September, 1897, failed to discover more than four distinct stages in addition to the egg and adult, although there was more than a suspicion that at least one other stage was present. Owing to the lateness of the season the species could not be followed through all its molts.

The late Dr. Riley, in his Seventh Missouri Report (p. 21), and in the report of this Department for 1887 (p. 59), in treating of the chinch bug, *Blissus leucopterus*, mentions only the newly hatched larva, the larva after the first molt, and after the second molt, and the pupa, or four preparatory stages in addition to the egg. Three of these stages are figured on plate 1 of the report of this Department for 1887. Prof. S. A. Forbes, in his report as State entomologist for Illinois, for the year
1883 (1884, pp. 119, 120), figures and describes four stages of the tarnished plant-bug, *Lygus pratensis*. Of the different stages of the cotton stainer, *Dysdercus suturellus*, Messrs. Riley and Howard remark in Insect Life (vol. 1, p. 236), that among the material sent to the Department four preparatory stages were distinguished, "which undoubtedly represent separate molts, and, from the gradation in size, probably represent the complete life of the insect." These four stages are illustrated, as also what is doubtfully believed to be the newly hatched nymph. Other instances of the recognition of four nymphal stages might be cited, but the above will serve to define the trend of opinion on this topic until recent years.

In none of the works consulted, except those of comparatively recent date, did the writer find mention of the occurrence of more than four stages in the growth of Heteroptera, except in Mr. M. V. Slingerland's bulletin on the four-lined leaf-bug (Bul. 58, C. U. Agric. Expt. Sta., Oct., 1893), and in Mr. A. L. Quaintance's bulletin on strawberry insects (Fla. Agric. Exp. Station, Bul. 42, August, 1897, pp. 566-574). In the former bulletin five stages of the Capsid, *Paecilocapsus lineatus*, are figured and described, and in the latter, *Pamena vinicola*, a small Lygaeid, is similarly treated.

At the opening of the season of 1898 an attempt was made to find a sufficient number of the adults of *Anasa armigera* to observe all the different stages and molts. As this effort at first met with failure, it was determined to make the same experiment with *A. tristis*. As a result, five distinct stages, in addition to the egg and adult, were observed. Later the same five stages were recognized in *A. armigera*. It is somewhat surprising that the existence of these five stages were not known to earlier writers. This may be accounted for in most cases perhaps by the failure to recognize a difference between the second and third stages and less frequently between the third and fourth.

Some zoologists, among others Messrs. Comstock and Quaintance, consider all of the immature active stages of Heteroptera as nymphs. On the assumption that the difference between the larva and the nymphs consists in the absence or presence of wing-pads, it is often a matter of considerable difficulty to separate the one from the other. According to this definition, the stage just previous to the last molt before the adult stage is assumed is always a nymph, as is also the stage just previous to this, but the two stages between this last and the first, or so-called larval stage, are difficult to define. Practically all stages in some species have either wing-pads or at least the semblance of them.

It should be remembered that the descriptions and measurements that will be given of *Anasa tristis* apply to the nymphs immediately after molting, this being the time taken for the descriptions. There is practically no difference between the length of the body just before and immediately after molting.
The life history of this species, as determined by observations of the past summer, is presented herewith.

THE EGG AND OVIPosition.

The egg (fig. 3).—The egg is shining and dark coppery or bronzy brown in appearance, being whitish when first laid, but soon changing to light yellowish-brown, and just before hatching to dark bronze. It is flattened on three sides; viewed from either end (b) it is triangular, while the base or side of attachment (a) is strongly concave, rounded at its sides and narrowed at each end, near the middle being provided with a nipple, the evident point of attachment. The surface is apparently nearly smooth, but when magnified is seen to be reticulated, being composed of a network of minute and very regular hexagonal areas (c).

The length is nearly a half greater than the width, and the greatest depth is about the same as the width. Length, 1.55\text{mm}; width, 1.05 to 1.10\text{mm}.

Oviposition.—Eggs are deposited in more or less regular rows, with a tendency toward the alternate regularity of checkers laid on the black or white spaces, as in the case of the large mass figured at d, but sometimes they are disposed much less regularly and may be closely crowded together, as in the small mass also figured at d, or they may be quite widely separated. Egg masses are deposited usually on the lower surface of a leaf, but very often also on the upper surface and on the stems. When laid on the under surface between two veins the mass is apt to be compact. A mass before the writer consisting of about twenty eggs occupies a space of but little less than one-fourth of an inch square, while another mass of the same number requires a space nearly 1\frac{1}{2} inches square. Normal oviposition is in rather large masses of from twenty to forty, or more, but small masses and even eggs laid singly are often found.

The nymph makes its escape by forcing a hole through one end of the egg, as shown at b of figure 3.

DIFFERENT STAGES OF THE NYMPH.

First stage (fig. 4, a).—When newly hatched the larva is an attractive little creature; the body is light green, with the legs, antennae, and haustellum a beautiful rose color. The head and the anterior part of the thorax is lighter rose and the eyes darker; in a few hours these parts with the entire thorax turn black. The body is elongate sub-ovate, the head subtriangular, rather bluntly pointed, the apex of the abdomen a little more acute. The antennae and legs are subequal and of nearly the same length as the entire body. The four joints of the
antennæ are subequal in length. The first and second joints are subcylindrical; the first widest, the third and fourth fusiform, the third a little wider than the first, and the fourth widest. The antennæ as well as the legs are quite hairy. The dorsal tubercles of the abdomen and the marking of the abdomen are indicated in the illustration.

The length of the body when the nymph is first hatched is a trifle less than 2.5 mm, which becomes just prior to the first molt about 3 mm or the same length as the next stage immediately after the molt.

Just before each molt the nymph becomes stouter, the abdomen very much rounded as if swollen, and the color lighter.

Second stage (fig. 4, b).—After the first molt the abdomen becomes a light pruinose gray and the tubercles and all markings become more pronounced and conspicuous; the head loses somewhat its triangular appearance, the eyes show more prominently at the sides, and the third joint of the antennæ is noticeably largest. The thoracic portion is now comparatively smaller and lighter in color. Immediately before molting the abdomen becomes very much enlarged, as though swollen, the color turns nearly uniform lighter pruinose gray, looking almost white, and the sutures of the upper surface of the head are nearly invisible. Length when first molted, a little more than 3 mm.

Third stage (fig. 4, c).—After the second molt the larva has changed but slightly except in size and in the darker color of the body. The legs and antennæ have increased in length, maintaining the same relation to the body as at the first day of the preceding stages; in other words, the third larval stage is a nearly exact counterpart on the day of molting of the second larval stage on the same day in its development. Immediately before molting, however, it undergoes considerable change, presenting the appearance shown in the illustration. Length, about 4 mm.

Fourth stage (fig. 4, d).—In the stages previously described the scale-like process which represents the wing-pad of the fifth or last nymph stage increases slightly with each molt. With the molt which ushers in this stage this process shows considerable growth, approaching closely to the true wing-pad of the next stage. The next most observable difference between this stage immediately after molting, and the previous stage at the same period of growth, is in the increased width of the thoracic and abdominal portions and the general darker color of the body; the body is nearly pyriform in shape. Length when first molted, 6 or 7 mm.

![Fig. 4. Anasa tristis nymphs: a, newly hatched; b, second stage; c, third stage; d, fourth stage; e, fifth stage—all about twice natural size (original).](image-url)
Fifth stage (fig. 4, e).—The last nymph stage is so distinct from all previous stages that a description is scarcely necessary, as this form is sufficiently shown by the illustration. It is characterized chiefly by the increased growth of the thorax, which is now longer as well as wider at the base, and more particularly by the lengthening of the wing-pads—two changes which produce an increased semblance to the mature bug. The hairiness of the legs and antennae which was so pronounced in the first stage has gradually become less and less evident with each successive molt until the hairs now, although plentiful, are little more than fine short bristles. Length when first molted, 9 or 10 mm, just twice as long as wide.

BRIEF DESCRIPTION OF THE ADULT.

To complete our knowledge of the different stages of this species the accompanying illustration of the adult is added. Figure 5, a represents a female bug, about twice the natural size. It measures a little less than three fourths of an inch (14 to 16 mm) in length, is dirty dark brown above and mottled yellowish beneath. The hau- stallum, seen in the profile of the head and thorax (b), passes when at rest under the body. The terminal segments of the abdomen of the sexes are shown at c and d, the former representing the male, the latter the female.

THE PERIODS OF THE LIFE CYCLE.

The carrying of this species through all its stages in the rather close confinement of small rearing jars gave variable results in the periods. Only two of these, the egg and the first stage of the nymph, were at all constant for the same temperature.

The egg period was found to vary from eight to thirteen days, this period depending as do other periods on the exposure to heat or cold, dryness, or humidity. The later periods were also influenced perhaps by the food supply. The usual period of the egg is between nine and ten days.

The first nymph stage requires a period of three days, or a little less; the second was passed in eight and nine days; the third in seven and eight days; the fourth consumed six days for this period; and the fifth stage required eight days.

As some of the nymphs died in confinement, a number of this lot that had recently hatched were placed, July 3, on a squash plant on the experimental plat connected with this Division on the Department grounds. From these, three adults, the first observed of the season,
were obtained July 31, from nymphs taken from the field while in the fifth stage. This lot had completed its life cycle from the hatching of the egg to the emergence of the nymph from the last nymph skin in twenty-eight days, or in exactly four weeks. From the lot kept in confinement, from thirty-two to thirty-four days were required. We may then set the aggregate of its nymph periods down as between four and five weeks for this latitude. The egg period was ten days, which would give thirty-eight as the total ascertained period in days of the complete life cycle.

The first eggs of the season of 1898 were taken at Marshall Hall, Md., June 18. The first nymphs hatched June 27. Eggs that were laid June 19 hatched July 1, or in twelve days. As the weather was very hot during several days of this period, the time of first egg-laying in this locality that year may be safely placed at June 13.

After the first week of August adults of the old generation had practically disappeared, none being found when sought for, yet during the second week a number of egg masses newly laid were observed which must have been deposited by the adult bugs, as none of the many bugs reared in confinement laid eggs, and there is positively no evidence of more than a single generation produced each year. This is the condition in the District of Columbia and northward, and it is not unlikely that the same conditions prevail in the South, notwithstanding a statement which has been made by an entomologist of one of the Southern States that "several successive broods are raised during the season." It is not impossible, however, that an attempt is sometimes made in exceptional seasons like that which has just passed to produce a second generation but there is no possibility of such developing through the fact that there is no food supply, and further because of the frosty weather which always ensues during the latter part of October and during the month of November. A single instance of either protracted development or a futile effort to produce a second generation was observed the past year. A nymph in the third stage of its growth was taken on a squash vine October 13 and kept in a considerably warmer indoor atmosphere until November 9, at which time it had reached only the fourth stage of development. It would eventually have perished if it had been left upon the vines where found.

NATURAL ENEMIES.

In spite of the somber color of this insect, its quiet and secluded habits, and its offensive odor, it is not without its natural enemies. The majority of predaceous animals, however, including insects, are generally believed to avoid it.

The number of nymphs of this species on our experimental plats the past season being entirely out of proportion to the large number of egg masses previously observed, the writer became suspicious that some outside agency was at work in depleting the numbers of this insect.
Toads being rather frequently met with, fell under suspicion, and accordingly one was captured and was dissected by Dr. Sylvester Judd, of the Biological Survey of this Department, with the result that only a single specimen of this species in its adult condition was found. The toad has been previously recorded as an enemy of this insect by Mr. A. H. Kirkland (Bul. 46, Mass. Agric. Coll., p. 26). The squash bug is evidently not relished by toads, although it sometimes forms a portion of the food of this Batrachian.

A tame lizard (Sceloporus undulatus) when fed upon squash bugs devoured them readily in spite of the powerful odor which the bugs exhaled. One bug, however, sufficed for a meal.

None of the eggs that came under observation early in the season were parasitized, but toward the end of the season of the hibernated bugs, two species of parasites were observed. None of the egg clusters gathered for the purpose of rearing the parasites gave out these insects except where the parasites themselves were captured with the eggs. The parasites reared were referred to Mr. W. H. Ashmead who identified them as Hadronotus anasew Ashm. and Ooencyrtus anasew Ashm. The first of these was described under the genus Telemomus, and the latter under Encyrtus (see Bulletin No. 14, old series, p. 23). According to Mr. Ashmead, 30 per cent of the eggs of this bug collected by him in Florida were parasitized by the Hadronotus. They were reared there in June and July. None of the parasites observed in the neighborhood of the District of Columbia issued earlier than the last day of July, and the majority appeared considerably later in August, the last individual issuing August 23. The two parasites appear to have the same seasons, and their arrival on the field, judging from past seasons' observation, is too late to be of any great service.

The same is true as regards Trichopoda pennipes, the well-known dipterous parasite of the adult squash bug. Although these flies appeared soon after the advent of the bugs and in considerable abundance, they seemed to accomplish little in the direction of reducing the numbers of their host. The writer's attention was called to the fact that a majority of the parasitized bugs were female, but too late, unfortunately, to determine what effect this had upon egg-laying. The parasitized individuals were not noticed to die much earlier than those which succumbed to natural causes.

Anasa tristis is credited with having cannibalistic tendencies, but although the writer has had under observation several hundred individuals of this species, this habit has never been noticed. A single individual was observed, however, with a dead nymph of Leptoglossus oppositus suspended from its beak.

August 6, 1898, the writer noticed an individual of Anasa tristis affected by an entomogenous fungus which appeared upon the upper surface of one of the antennae. It was referred to the Division of Vegetable Physiology and Pathology, and Mrs. Flora W. Patterson stated
that the interior of almost the entire body and all of its appendages were pervaded by the mycelium of the fungus, which, however, was not in condition for satisfactory identification. It was stated to be “probably a conidial stage of some Cordyceps, a *Sporotrichum* sp.”

This squash bug is also subject to the bacterial disease, *Bacillus entomotoxicon* Duggar.

NORTHERN LIMIT OF THE SPECIES.

A letter from Dr. C. H. Fernald, dated January 19, 1899, is of unusual interest as bearing upon the northward progress of this species. He writes that during the fifteen years he was at the University of Maine, at Orono, the squash bug did not occur there nor at Mount Desert, nor in any part of eastern or northern Maine, so far as he could learn. He received specimens from Auburn, Me., where the species was said to be common, also from Waterville, which was the most northern and eastern place in Maine where it occurred in his experience.

Prof. F. L. Harvey, who has had opportunity of observing this species in more recent years in Maine, has written us of its occurrence in Orono, which is about 25 miles farther north and considerably farther east than Waterville.

ECONOMIC STATUS.

It seems not improbable that injury by this squash bug is somewhat exaggerated in many reported cases, the damage observed being often due to other insects which are less apt to be noticed. We seldom find less than three or four forms of injurious insects present at the same time upon an infested plant, and this squash bug, on account of its large size, is more apt to attract attention than are the much smaller but more destructive striped cucumber beetle and melon louse; the squash-vine borer, by reason of its concealed manner of living within the vines, is not so readily detected, and the result is that the squash bug receives the blame for the depredations of the others.

An instance of the nature described was reported by a correspond. ent at Sioux Falls, S. Dak., who wrote November 25, 1898, that this species, specimens of which were sent, was the cause of the loss of about two hundred vines of squash and pumpkins. The mature bug was reported to bore in the vine, sucking out the sap. “A vine would appear all right one day and the next would be flat on the ground, wilted as if killed by frost,” evidence of the presence of the vine borer.

METHODS OF CONTROL.

This squash bug, particularly the adult, is unusually resistant to insecticides. A wash strong enough to kill the mature insect will at the same time destroy the vines. This renders it necessary to employ hand and cultural methods.

A number of the remedies in use against the striped cucumber beetle, as already outlined in Circular No. 31, second series, will assist in
the destruction or control of the common squash bug. Among these are: Protection of young plants with coverings; repellents, such as land plaster or gypsum saturated with kerosene or turpentine; planting an excess of seed to distribute attack; stimulating the growth of the plants by manure or other fertilizers, and, lastly, clean cultural practice.

If the precaution be observed of gathering the vines as soon as the crop is harvested and burning them, many bugs in their different stages will be destroyed and the crop of insects reduced for the ensuing year.

Of other methods in general use against this species are hand-picking early in the season and the trapping of the bugs by means of boards, pieces of bark, or similar material, placed about on the ground in the garden.

Protection to cucurbits other than squash and perhaps pumpkin can be secured, as was demonstrated during the past two years in the writer’s experience, by growing these plants with the others to serve as trap crops. Attack will thus be centered upon a few plants, where the insects can be more readily controlled by the measures already mentioned. As corroborative of the above statement, it may be mentioned that Mr. E. L. Horton, Jr., East Steamburg, Schuyler County, N. Y., wrote May 24, 1898, that this species would not touch cucumbers if there were any squashes in the neighborhood. In our correspondent’s experience this species showed a preference for squashes over pumpkins, and of pumpkins over cucumbers and melons.

THE HORNED SQUASH BUG.

(Anasa armigera Say.)

RECENT OCCURRENCE.

July 12 and 13, 1897, *Anasa armigera* Say was observed by the writer near Colonial Beach, Westmoreland County, Va., on cucumbers. A lookout was kept for the species from that time, with the result of its being taken by the writer and Mr. F. C. Pratt, who assisted in field work, on August 2 at Poolesville, Md., on squash; August 10 at Seat Pleasant, Md., on cantaloupe; and later at Ballston, Va., on cucumber. August 25 it was found on cucumbers also, on the Conduit road, District of Columbia, and a few days later it was taken in all stages at Tennallytown, D. C., at which place it occurred in great numbers, doing perceptible damage to a late crop of cucumbers. On the 29th of September this insect was again observed at the latter place on watermelon in all stages, from egg to adult; hundreds being found on a single vine. All of the other cucurbits on this and neighboring farms had been harvested and the vines pulled up, which fact will, in a measure, account for the numbers of the insect at this time. In every instance where observed these bugs were associated with *Diabrotica vittata* and
other well-known enemies of Cucurbitaceae, and they undoubtedly contributed their quota that year toward injuring these crops. On the last date mentioned they outnumbered all of the other insects, although the cucumber beetle was present in such numbers as to have left large holes in every leaf that could be seen. After the end of September no more specimens could be found, as cucumbers were mostly turned under and the stems and leaves of squashes and similar plants were dried up.

The first observed date of the occurrence of this species in the neighborhood of the District of Columbia was July 8. On this day of 1898 the writer found specimens on the experimental plats of cucurbits on the grounds of the Department of Agriculture, and Mr. Pratt took one at Poolesville, Md. Subsequently other individuals were found on the experimental plats, and it is probable that these were the offspring of a number that were left on the Department grounds in September of the previous year. It is quite positive now that this species is widely and generally distributed in Maryland and Virginia within a few miles of Washington, and to be found here almost wherever cucurbits grow. Since the first capture of this species in 1897 it has been found on cucurbits wherever sought for.

July 16 it was observed in abundance at Marshall Hall, more individuals of this species being seen than of A. tristis. It was apparently more abundant than the latter species, but this was probably not the case, as the latter, although nearly always to be found at the same time with it, is less active than armigera and not usually seen in the heat of the day. The greater activity of armigera was quite noticeable on this day, numerous individuals being seen in flight and freely exposed on the upper surface of the leaves, while tristis, when seen at all, was usually on the edge of a leaf concealed beneath the leaves or under débris in the immediate vicinity of cucurbit plants. The greater abundance of tristis as a whole in localities inhabited by both, the writer believes, may be accounted for, partially at least, by its darker color and less active diurnal habits. Armigera is particularly conspicuous when flying, as the upper surface of the abdomen exclusive of the connexivum or sides is bright orange, and this gives the principal coloring to the insect itself when in flight.

The dorsal surface of the abdomen of tristis is black, but occasionally this part is colored, as one individual captured shows a bright red interior.

July 29 nymphs of this species were found on cucumber at Cabin John, Md., as also on cantaloupe, but were rare on both plants. No squash grew in the vicinity.

This squash bug was never received through correspondence till August 3, 1898, when Mr. Henry J. Gerling sent specimens from St. Charles, Mo., with the accompanying information that they travel along the cucurbit vines, "taking an inactive position on either leaves or vines for some time." They were not detected in the act of feeding, as I
presume that our correspondent was not aware of the fact that they obtain their food by suction.

It is now fairly certain that this species has practically the same food habits as *tristis*. Where squash was available the insects were very rarely to be seen on melons or cucumbers. Such were the conditions at Marshall Hall and in Washington.

DESCRIPTION AND DISTRIBUTION.

This species was described by Thomas Say in 1825 (Proc. Ac. Nat. Sci. Phila., vol. iv, p. 319, Lec. ed., p. 244), but nothing concerning its biology has been published, so far as can be learned, prior to a short preliminary note by the writer, entitled "A new squash bug," which appeared in the September (1898) number of the Canadian Entomologist (vol. xxx, pp. 239–240).

The mature bug is of nearly the same size as *Anasa tristis*, from which species it may readily be distinguished by its broader prothorax with prominent angles, the reflexed connexivum or sides of the abdomen, which show each side of the hemelytra four prominent white marks, and its unispinose femora. This spine is borne by each leg near its apex. The surface above is brown, and the legs and first joint of the antennæ are whitish, spotted and irrorated with black. The terminal antennal joint is light-yellowish, as is also the articulation of the first joint with the second and the second with the third. In front of each eye, just behind the insertion of the antenna, is an acute porrect spine or horn. The adult is illustrated by figure 6, a.

The full-grown bug when first transformed is yellowish-cream color, the eyes showing brownish-red and the last antennal joint bright sanguineous. In a few minutes, however, the normal markings appear, the insect itself growing perceptibly darker as it is watched.

Say's specimens were from Missouri and there is a series in the National Museum from western Iowa and Florida. The species is essentially a southern one and evidently Lower Austral and perhaps Tropical, although some of the localities mentioned are Upper Austral. From the fact that the species is so well adapted to the climate of the District it seems probable that it is not a recent introduction from the South, but has been established here for many years. I fail to find mention of the occurrence of this species in Central America. It is not included in Biologia Centrali Americana with *A. tristis*, but it doubtless occurs there, as we have in the National Museum collection a specimen from Port of Spain, Trinidad.

In the collection of Mr. Heidemann are three specimens of a species that at first glance would readily be mistaken for *armigera*. They are from the District of Columbia and Glen Echo, Md., and are labeled *Anasa repitata* Uhler MS. The most observable difference between this species and *armigera* is the absence of the porrect spines or horns on
the head. Its habits are unknown, but it doubtless also lives on cucurbits.

Still another species is likely to be mistaken for it. This is *Archimermis calcarator* Fab. It is a little larger than *Anasa armigera*, but from that species it may at once be known by its much thickened and multispinose femora.

The Egg.

The egg closely resembles that of *A. tristis*, so nearly in fact that it is difficult to distinguish them otherwise than by color. It is beautiful, bright, shining coppery, lighter and with a less bronzy appearance than in *tristis*. It is also just perceptibly narrower at each end as viewed from below. Length, 1.50 to 1.60 mm; width, 1.15 mm.

The egg is shown at *b* and *bb*, much enlarged, and the reticulation of the surface is indicated by a much enlarged section at *c*.

Nymphs.

Throughout the five stages of the nymph, *armigera* is so different from *tristis* that there is no danger of anyone mistaking one for the other. This applies to color, structure, and form about equally. The following most observable differences may be briefly indicated in tabular form for convenience.

Nymphs Compared.

<table>
<thead>
<tr>
<th>Armigera</th>
<th>Tristis</th>
</tr>
</thead>
<tbody>
<tr>
<td>First stage.</td>
<td></td>
</tr>
<tr>
<td>White, with red eyes, antennae and red-banded legs and abdomen. Antennae longer than body, penultimate joint widest.</td>
<td>Black, with green abdomen. Antennae shorter than body, joints subequal. Legs nearly uniform black.</td>
</tr>
<tr>
<td>Second stage.</td>
<td></td>
</tr>
<tr>
<td>Much like first stage; penultimate antennal joint still wider. Legs banded with brown.</td>
<td>Much as in first stage, abdomen gray, thorax lighter.</td>
</tr>
<tr>
<td>Third stage.</td>
<td></td>
</tr>
<tr>
<td>Three segments of thorax scale-like, prolonged posteriorly, and overlapping; sides reflexed, strongly dentate and denticulate. Connexivum also strongly dentate.</td>
<td>Three segments of thorax not produced, reflexed, or dentate. Connexivum feebly subdenticulate or subspinose.</td>
</tr>
<tr>
<td>Fourth stage.</td>
<td></td>
</tr>
<tr>
<td>As above, the thorax becoming wider and the reflection and denticulation more pronounced.</td>
<td>Pronotum feebly overlapping. Meso- and metanotum produced.</td>
</tr>
<tr>
<td>Fifth stage.</td>
<td></td>
</tr>
</tbody>
</table>
First stage (fig. 6, d).—Immediately after hatching, the nymph is clear white with the bands on the legs yellow, the antennae, eyes, and the spots on the body red. In a few minutes, however, these parts begin to take on darker shades. A similar condition is observable also immediately following the shedding of the other nymph skins.

Just before the first molt the body is proportionately more rounded and robust than in the adult, and the appendages, including the head, are more prominent. The general color is clear white. The antennae are a little longer than the body and considerably flattened, the penultimate joint particularly so. They are finely hairy, very dark red in color, and narrowly white at the sutures. The head is large, hexagonal, white, and the eyes are red. The body is white, widest about the middle of the abdomen, the wing-pads infuscated, and the abdomen marked with red, as shown in the dark shading in the illustration. The legs are white and ornamented with infuscate bands in the manner indicated in the figure, which sufficiently illustrates this stage as to render further description unnecessary. Length, about 2 mm.

Second stage (fig. 6, e).—This stage very closely resembles the first. The antennae, particularly the penultimate joint, become still more prominent and the head grows darker in color. The legs are banded with brown. Length, about 3 mm.

Third stage.—The third stage differs from the second principally in the larger size of the body, which has assumed a pyriform shape, the darker color of the body and bands on the legs, and in the greater prominence of the tubercles at the sides of the body. The three thoracic segments are also more prominent, prolonged posteriorly, and overlapping at the sides. Its sides are reflexed, strongly dentate and denticulate. Connexivum also strongly dentate. Length, about 5 mm. This stage is not illustrated.

Fourth stage (fig. 6, f).—With this stage, as in tristis, the wing-pads become evident, the thorax widens, the abdomen increases in girth, and the third joint of the antennae decreases in width. The reflexion and denticulation is still more pronounced. Length, about 7 mm.

Fifth stage (fig. 6, g).—In the fifth or last stage this species more closely resembles the mature form than is the case with tristis. This
effect is produced by the prominent angle of the prothorax and the similar markings of the legs. In addition to the increased length of the wing-pads and other observable characters, shown in the illustration, the spines in front of the head which have now made their appearance are noticeable. The central portion of the abdominal tubercles are yellow, and yellow alternates with black on the lateral tubercles of the abdomen. The entire body, including the ventral surface, is darker in color. The last antennal joint is black, at least in its posterior moiety, the tip being yellow. Length, about 9 mm.

LIFE HISTORY.

The eggs of this species are deposited in much the same manner as are those of the common squash bug, the young making their escape in the same way. Thus far, however, egg masses that have been found are all smaller, numbering not more than about 20, as compared with 30 or 40 which are often observed in *tristis*.

July 30, in examining watermelons for evidence of insect attack, two masses of eggs of this squash bug were found on different melons, deposited on the under side near the ground.

Often this species is to be found with its congener, living in different stages in apparent harmony. Colonization is rather less obvious than in the case of *tristis*.

A pair of adults was obtained July 14. On the following day they were observed mated and next day 10 eggs were deposited.

The precise period of the egg from deposition to hatching was not noted. It was presumably about eight days, however.

The different stages of the nymph of the horned squash bug, with the exception of the first and fifth, occupied five days between each molt, as observed during the hottest weather, represented by an average of about 85°F.

The first molt occurred two days after hatching; the fifth stage occupied six and eight days in different lots. These periods, including the egg, may be tabulated as follows:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Date</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>Not observed</td>
<td>Eight days (estimated).</td>
</tr>
<tr>
<td>First nymph</td>
<td>(July 28 to 30</td>
<td>Two days.</td>
</tr>
<tr>
<td></td>
<td>July 29 to 31</td>
<td></td>
</tr>
<tr>
<td>Second nymph</td>
<td>July 30 to Aug. 4</td>
<td>Five days.</td>
</tr>
<tr>
<td></td>
<td>Aug. 3 to 8</td>
<td></td>
</tr>
<tr>
<td>Third nymph</td>
<td>Aug. 4 to 9</td>
<td>Five days.</td>
</tr>
<tr>
<td></td>
<td>Aug. 9 to 16</td>
<td>Seven days.</td>
</tr>
<tr>
<td>Fourth nymph</td>
<td>Aug. 9 to 14</td>
<td>Five days.</td>
</tr>
<tr>
<td></td>
<td>Aug. 10 to 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aug. 15 to 22</td>
<td></td>
</tr>
<tr>
<td>Fifth nymph</td>
<td>Aug. 21 to 22</td>
<td>Seven days.</td>
</tr>
<tr>
<td></td>
<td>Aug. 3 to 11</td>
<td>Eight days.</td>
</tr>
</tbody>
</table>

The minimum period of the entire life cycle was thus thirty-two days. In another experiment in which a lot of adults were placed in a large rearing cage together so as to be under more natural conditions than 13892—No. 19—3
was the case where each stage was observed separately, this species passed its life cycle in the same time, the period being from the date of the beginning of the experiment to the finding of the first newly transformed bug, thirty-two days, August 2 to September 3.

The finding of eggs during the last days of September as observed in 1897 would certainly seem to indicate a tendency toward the production of a second brood. In 1898 the adults of the hibernated generation were nearly all dead in the field by the 2nd of August, but a few individuals remained some days longer in our rearing cages after this time. There was practically no overlapping of generations and there is no evidence to show more than a single generation annually since the eggs laid in September could not, in the writer's opinion, by any possibility have produced mature insects that year, for the lack of a food supply if for no other reason. Disappearance for hibernation began in September, and soon after the first of October the species had practically disappeared. One individual was found with its back incrusted with earth under a pumpkin in November.

NATURAL ENEMIES.

Undoubtedly this insect is exposed to the same enemies as the common squash bug. One individual of the adult captured in 1897 bore eggs of a Tachinid and another contained a hole through which the adult fly, probably *Trichopoda pennipes* Fab., the well-known enemy of the adult of *Anasa tristis* had made its escape.

REMEDIES.

In addition to the remedial measures specified as of value against the common squash bug and which will undoubtedly prove equally successful against the present species, it is probable that we may be able to control it at least in the latitude of the District of Columbia by taking advantage of its late presence in the field. This may be accomplished by setting out a few late cucurbits as a trap crop. After the old vines have been destroyed the bugs will congregate on the later plants and here can be more successfully dealt with. A good way would be to distribute these trap plants about the garden patches and then set fire to them when the bugs have congregated upon them in sufficient numbers. This could readily be done by throwing upon the plants dry straw or similar material and adding a little kerosene.

SOME OBSERVATIONS IN THE LIFE HISTORY OF THE SQUASH-VINE BORER.

(*Melittia satyriniformis* Hbn.).

In the gathering of material that would illustrate the life history of the squash-vine borer a number of observations were made that may be of interest in connection with the illustrations which are here presented.
As no technical description of the egg appears to have been published, the notes which follow may properly begin with such description.

THE EGG AND OVIPosition.

Form oval, convex above, with a rather well-defined broad and more or less impressed disc (see fig. 7, a). Surface of attachment flattened to the object upon which the egg is deposited (see b). Color, dark, dull reddish brown. Surface finely reticulate, divided into minute areas which usually take the form of hexagons, as shown at c, but which are not infrequently pentagons, heptagons, and even octagons. Each area under a high power of the microscope is seen to be composed of many smaller areas or pits. Length, 1 to 1.12 mm; width, 0.76 to 0.90 mm.

A group of three eggs is illustrated as deposited, about one-third larger than natural size, at e of figure 8.

Eggs that were laid July 15 hatched on the 21st, or in six days. Those deposited July 16 hatched July 22, beginning about 9 a.m., in a little less than six days.

The female from which these eggs were obtained was confined in a cool, dark room, except when in use as a model for the illustration which is presented in this article, and deposited during the short time that she was kept under observation 3 eggs July 15 and 54 the day following, the latter mostly just before noon, and this while in close confinement under unfavorable conditions. Prof. J. B. Smith, who has given the study of this species considerable attention in New Jersey, records as high as 212 eggs dissected from a single female. He also makes the statement that the larvae appear in from twelve to fifteen days after the eggs are laid.

THE LARVA.

In the summer of 1897 it was noticed that the larvae of an apparently second species were also at work within the stems of squash. These were much smaller and more slender than those of what were known to be Melittia satyriniformis, but as they were not known to be different species, no effort was made to preserve specimens or to rear them at that time.

The following year the same larvae were observed. Those who saw them believed them to be a distinct species, but the writer was extremely doubtful as to the possibility of two species being present on
cucurbit vines, as no other adult Sesiid has ever been found on cucurbits by those who have studied this class of insects. This opinion was strengthened by rearing at about the same time the young larvae from the eggs. To verify the writer's belief in the matter, a number of young larvae that appeared to be ready to molt were separated, and July 25 two molted, and upon the next molt the ordinary form of satyriniformis was obtained. The species was not carried through all its molts, as this would require close application, and press of other matters already under way did not permit the undertaking, but enough was learned to show that the larva differs greatly from the time it hatches from the egg until it is ready for pupation.

Fig. 8.—Melittia satyriniformis: a, male moth; b, female, with wings folded in natural position when at rest; c, eggs shown on bit of squash stem; d, full-grown larva, in situ in vine; e, pupa; f, pupal cell—all one-third larger than natural size (original).

Reference to Dr. S. H. Scudder’s “Notes on Melittia cucurbitae and a related species,” published in Psyche (vol. iv, pp. 303, 304), in 1885—but as that writer states recorded in notes more than twenty-five years before that time—shows that he had these two forms of this vine borer as subjects for his descriptions and notes. On this head the late Dr. Kellicott wrote (Can. Ent., vol. xxiv, p. 209; Insect Life, vol. v, p. 82): “Among the smaller ones [larvae] there was an abundance of that second form described by Dr. Scudder, in Psyche, vol. iv, p. 303. Some of these were isolated, and after a few days, they molted, giving the typical form. This seems to prove that there is but one species.”

The accompanying illustrations show the great differences between the newly hatched larva, the half-grown larva, and the mature form.

The larva when first hatched is of the appearance shown in figure 7 at d. The head as with other newly hatched larvae is much larger in proportion to the body than later on in its development; the body tapers toward the anal extremity, the thoracic shield is considerably different, and the entire surface is much more hairy than in later stages. The length is 1.8\text{mm}; the width at the widest portion of the body, the first thoracic segment, is 0.66\text{mm}, while the head measures 0.58\text{mm} across.
The half-grown larva is described by Dr. Scudder in the article quoted, and this description need not be repeated in detail. The head is jet black and the dorsal surface of the first thoracic segment is nearly black, in both of which respects—as well as in the black anal process, which sometimes ends in a well-defined hook—it differs from the full-grown larva. Length, 13\text{mm}; width, 2.5\text{mm}.

A dorsal view of the half-grown larva is presented at \(e\), fig. 7, \(f\) showing the head and thoracic segments in profile. The full-grown larva, figured in profile within an opened squash stem at \(d\), fig. 8, is also fully described in the paper quoted. The head, it will be noted (fig. 7, \(g\)), is ornamented with a median white space, being usually dark brown at the sides, and the first thoracic segment is marked dorsally by two curved oblique brown bands which converge posteriorly. The full length is 25\text{mm}; width a little more than 6\text{mm}.

THE COCOON AND CHRYSALIS.

After attaining maturity the larvae desert the stems and enter the earth, burrying themselves to the depth of one or two inches, and form their cocoons in which they transform to pupae.

In its chrysalis case or cocoon the larva contracts to about 15\text{mm}, the case itself being a little shorter than the larva before contraction, averaging about 22\text{mm} in length by 7\text{mm} or 8\text{mm} in width. The cocoon, shown at \(f\), fig. 8, is composed of silk and is stout of texture, though rather thin when divested of the outer coat of grains of sand or earth which adhere to it by means of some gummy secretion of the larva. When thus treated it is found to be nearly black in color, both within and without.

The pupa or chrysalis, shown in profile at \(e\) of figure 8, measures about five-eighths of an inch in length (16\text{mm}). It is shining mahogany brown in color and its head is ornamented in front just above and between the eyes with a horn-like process. By means of this the pupa cuts its way out of one end of its cocoon, and by the aid of the abdominal hook-like spines forces itself to the surface of the earth before transforming to imago.

THE MOTh BRIEFLy DESCRIBEd.

As a complement to the illustrations and the descriptions of the life stages of this insect the mature moth may be briefly described.

The male moth is illustrated at \(a\) of figure 8. It is a most beautiful creature, a member of the family Sesiidae, otherwise known as clear-winged moths. Its fore-wings are opaque, lustrous, olive brown in color, with metallic green reflections, and the expanse is from less than an inch to nearly an inch and a half. The hind-wings, from which this family of moths derives its vernacular name, are clear and transparent and veined as shown in the figure. The abdomen is conspicuously marked with orange or red and black or bronze, and the hind legs
are fringed with long hairs, red or orange on the outer surface and black inside.

The female moth is illustrated in the figure at b, this representing the natural position when at rest.

SYNONYMY.

A few words of explanation are due in regard to the specific name *Melittia satyriniformis* used in the title head. This name was given by Huebner, who described the species in 1825. Three years afterwards Harris redescribed it as *Egeria cucurbitae* (New England Farmer, vol. VII, p. 33), and later Westwood gave the name *Trochilium ceti*, and as *Melittia ceti* it has for some reason been generally known in literature and collections up to a recent date. For a discussion of the synonymy and a full bibliography, see Mr. William Beutenmuller's paper (Journ. N. Y. Ent. Soc., vol. v, pp. 34, 35).

MANNER OF WORK OF LARVA.

Ordinarily the larva works in the woody parts of the stem, boring in both directions and appearing to prefer the portion near the roots. When many larvae, however, occur in a single vine in such abundance as to exhaust their food supply, they eat outward toward the bases of the leaf stalks. In one vine that was examined July 23, 1898, nearly every leaf stalk had been eaten into at the base, but not entirely through except in a few cases. In these instances the larva, which were nearly all approaching maturity, had worked through the leaf stalk up to the leaf itself. The larvae, practically throughout their entire existence, are perfectly capable of traveling from one vine to another, and in confinement were able to crawl up the sides of glass jars and to suspend themselves by means of their webs.

From what has already been stated, it is obvious that the younger larvae are more often found within the leaf stalks, and the older larvae within the main stem. While the larvae confine their work to the stalks, injury is hardly noticeable, but as they grow older and penetrate to the main stems near the roots damage becomes more apparent. One day the plant will look thrifty, and unless one examines the stem very closely for the excrement of the larva, infestation would readily escape notice, but within the short space of a single day all this may be found changed. The leaves wilt and die down and examination will now show a place where the stem has been cut off so closely from the roots that the drying effect of the sun has completed the work. A light pull at the stem and it will part at this point.

NUMBER OF GENERATIONS.

The question of the number of generations produced annually was practically solved by the late Dr. Kellicott in central Ohio, and Mr. J. D. V. Walker on Long Island. The finding of larvae still at work in
the stems as late as the middle of October in Columbus, Ohio, and still later in the District of Columbia, would suggest this and careful observations show that the species is partially double-brooded in this latitude, practically single-brooded on Long Island and northward, and fully and normally two-brooded in the Gulf States. Imagos were reared many years ago by John Abbott in Georgia, August 11, from larvae which spun up July 16; by Kellicott at Columbus, August 20 and afterward; and indications are that a moiety, probably less than half, normally develop the first year in the latitude of Columbus, while the remainder winter over as larvae and complete transformation the following year. In New Jersey, according to Dr. J. B. Smith, the species in exceptional cases completes its transformations "late in August or in September."

From larvae obtained in 1898 and kept feeding in our rearing jars at this office a moth was obtained August 25. A pupa from which the moth had already issued was also found the same day under a cover placed over a borer-infested squash plant on the grounds of the Department. Larvae, which undoubtedly belong to the second brood, are always to be found in the vines in the District during October, and some are still to be seen in November as late as the second week, as happened the past year. The plants, cymlings and pumpkins, upon which these larvae were observed were all planted in July, one lot in which a larva not quite full grown was found October 16, having been planted July 16. Moths of the first generation were observed that day and as late as July 22.

TIME OF APPEARANCE OF THE MOTH; NUMBER OF GENERATIONS.

For lack of opportunity of frequent observation the earliest appearance of the moths in the District of Columbia and vicinity has not yet been ascertained. At the times when moths have been sought for in June and early July they have hitherto escaped observation. Yet the larvae have been found full grown (25 mm long) in squash stems on our experimental plat as early as July 16. This happened in 1897, a year in which the season was estimated to be at least two weeks late; and from this it appears probable that the larvae mature here in normal seasons as early perhaps as the first week of July. The seed in this case was planted June 5. Larvae are to be found in the latitude of the District of Columbia from some time in June until as late as the second week in November, provided that food be obtainable for them, and this even though several frosts may have occurred and the plants be dead.

It is evident from the facts observed that there are three lots of moths occurring during the year, each lot following or even being "overlapped" by the preceding one. The first lot appears late in May or early in June and July, and probably is the offspring of the larvae of the first brood, which have wintered over instead of issuing as imagoes the first year. The second lot appears later in July and early in
August, and is probably the product of the second brood of larvae produced during the previous year. The third lot, which forms the normal second brood, appears late in August and probably later. This peculiarity in reproduction and the subsequent appearance of the parent moths is of course, somewhat hypothetical and evidently a survival of the times when this species lived in the Tropics, where breeding was almost continuous except during rainy seasons. The instinct of the insects is still to appear early and remain late, provided the appropriate plants are available for their food.

ECONOMIC STATUS.

In the District of Columbia and in nearby localities in Maryland the squash-vine borer has been during the past two years the species most to be feared as an enemy to the culture of squashes. Of its status in other regions Dr. Smith, writing in 1891, says that it is "the most dangerous enemy to squash culture in New Jersey." In New England, according to another writer, it is "the most obstinate enemy to this crop in the settled sections." In other localities this species has to yield the first place as a cucurbit pest to the striped cucumber beetle, particularly where cucumbers are the staple crop; and in others, where melons are the chief product, the melon louse is the principal pest.

PREVENTIVES AND REMEDIES.

Ordinary insecticides are of no value against this insect when once it has entered the vines, and repellents are also practically useless. The measures that have been found of greatest value are, in brief: Not to plant in or near infested ground; to plant early varieties for the protection of late squashes; to harrow infested fields late in fall and plow deeply in spring, or reverse the process, to prevent the moths from issuing; to encourage the growth of secondary roots by covering the vines at the joints with earth; to destroy dead vines and old plants as soon as the crop is made; to keep the plants in vigorous condition, free from other insects and diseases; to cut out such borers as may succeed in entering the vines, which they will sometimes do in spite of the observance of precautionary measures; and to capture the moths early in the morning or toward dusk when they are less active than in the heat of the day. The employment of all the methods of control mentioned is not necessary, but if the grower would make certain of securing a good crop in localities where this and other enemies of the squash occur in their most troublesome numbers it will be wise to observe most of these precautions, and if possible it will be well to secure the cooperation of neighboring farmers in their observance.
NOTES ON THE PICKLE WORM AND MELON CATERPILLAR.

THE PICKLE WORM.

(Margaronia nitidalis Cram.)

OBSERVATIONS IN 1897.

September 4, 1897, it was noticed at Cabin John, Md., that such cymlings as had escaped the ravages of the vine borer, Melittia satyriniiformis, and did not yet bear developed fruit, were attacked by the pickle worm boring holes into them from without. One cymling contained nearly a dozen holes, and one of the larvæ emerged from the largest hole, which appeared to be the only one that was then occupied, and started to make another. Afterwards it returned through the large hole, but finally perished, evidently of a bacterial disease. Another, that was nearly mature, refused to emerge from the interior of the cymling which it inhabited. When last observed, September 9, it was in perfect condition, but when sought for on the 10th it had entirely disappeared, evidently dying of the same disease that had attacked the first specimen mentioned.

Holes were also noticed in muskmelons in the same garden, and September 11 a larva was cut from one and kept until the 16th, feeding on bits of cymling. On the morning of this date it left the piece upon which it was feeding and in the afternoon began to spin up. On the following day it completed a very fragile cocoon and remained motionless, hanging downward. The cocoon was formed that night.

An infested cantaloupe brought to the office from Ballston, Va., September 15, and confined like the other, showed the work of this larva, which cast out large quantities of frass and excremental fluid for three days. On the 20th, however, it had ceased, and when the fruit was cut open nothing could be found. It had evidently fallen a prey to the disease which had killed the other, as there was no possibility of escape.

A larva was taken upon a leaf of cymling on the experimental plat of the Department September 30.

October 1 and 2 the work of this species was observed on the office plat of cymling squashes, in buds, in ovaries, and in immature and nearly ripened fruit. Larvæ were found at work in all of these parts of the plants, and openings quite different from those of the vine borer, were also found in the stems; and although the larvæ were not observed, it is more than probable that all of them were due to the work of the caterpillar of this species, as they had plainly been made by a caterpillar boring into them from without.

A larva taken from a cymling October 1 began to spin up its cocoon the day following, and transformed to a chrysalis on the 5th. On the 25th it issued as an adult, having remained three or four days in its cocoon before transforming and twenty days as a chrysalis.
For some reason *Margaronia nitidalis* was not to be found in the vicinity of the District of Columbia during 1898, in spite of frequent and careful search. It seems not improbable that the species was unable to survive the rigor of the winter season of 1897–8 or at least succumbed to some atmospheric condition unfavorable to its hibernation. Should this hypothesis prove correct it will be interesting to learn how long the species will be in establishing itself by migration from farther south. Specimens, however, were received from the South and under such circumstances as to show that work is needed upon the earlier stages of our two cucurbit-feeding *Margaronias*.

Mr. Charles Deckner, Atlanta, Ga., wrote that this species, specimens of which he sent, attacks the crop in his locality from the middle of July to the first of August, continuing its destructive work until frost.

A larva received from Mr. Deckner spun its cocoon August 16 and transformed to pupa the same night. It was found as imago early on the morning of the 26th, from its appearance having issued the previous night. This would give the pupa period as nine days, weather very hot, average about 85° indoors where this specimen was kept.

August 22, 1898, Mr. James H. Hevey, of Ingomar, Miss., sent leaves of squash plant on which were two larvae so conspicuously spotted as not to be recognized as belonging to either species of *Margaronia*. One was just hatched, and the other was perhaps half grown, being about half an inch long at the time when received. A larva of the same species was sent in on the same day by Mr. Deckner, also found on squash. When first received these larvae fed upon the leaves. A few days later they could not be found, but after careful search were discovered in the leaf stalks, into which they had bored. This is evidently their normal habit, as after they have once crawled into a stalk they cease to feed upon the leaves. In the confinement of a rearing jar they crawl through the open ends of the leaf stalks to the narrow portion nearest the leaf, and after hollowing this out they force their way up into the larger ribs of the leaf.

During the closing of the office September 4 and 5 these larvae shed their spotted skin, appearing dull brownish green, with a dorsal row of shining round spaces of the same color, from which it was inferred that they belonged to this species; but as we failed to rear them to the adult condition this could not be ascertained with certainty.

Messrs. Deckner and Hevey both sent more material, but, unfortunately, owing to bad weather, none of the larvae received were in condition for breeding.

THE MELON CATERPILLAR.

(*Margaronia hyalinata* Linn.)

August 13, 1898, Mr. Charles Deckner, of Atlanta, Ga., sent specimens of the larvae of this species, mostly full grown, in cucumbers and melons; also a specimen of the moth. The moth was taken on the cucumber
vine. He described the moths as very shy and difficult of capture. They remain in hiding all day and appear only after dark, when, by aid of a lantern or other light, they may be seen darting among the vines.

The species was not so destructive this year, owing, it was believed, to the excessively damp weather in that locality. Our correspondent was of opinion that these larvae do not feed on the foliage of melons or cucumbers, but that when fruit is scarce they frequently attack the tip of the vines where these are tender. In this respect this species resembles nitidalis, which, as we have previously observed, will attack buds and ovaries in the event of scarcity of fruit. They leave the vines, our correspondent further states, and go into the fruit whenever they have the opportunity. The vines also are attacked, the larvae boring into them a few inches from the tip and working their way inside the vine to the extreme end.

Our correspondent expressed the opinion that there may be some chance of attracting the moths to lights.

September 3 Mr. Deckner again sent specimens of the adult moth, with the information that his cucumber patch was at that time swarming with them. During the rainy season they appeared to be unable to conceal themselves and were easily dislodged. They were moving about then in large numbers. All of the specimens reared from larvae sent by Mr. Deckner proved to be nitidalis, and all those kept by him and reared at Atlanta were the same species, a matter which greatly puzzled our correspondent as well as the writer.

What was believed to be the immature larva of this insect was received in precisely the same manner and at the same time as was that of the pickle worm. It was found by Messrs. Deckner and Hevey on the foliage of squash, and, as with the immature pickle worm, was not identified nor reared. The supposed immature larva was striped very much like that of the greenhouse leaf-tyer, Phlyctenia ferrugalis. This striate appearance was observable in the larvae while quite young and until after they had attained a length of an inch.

Until the past year the writer had not been aware of the presence of this species in the vicinity of the District of Columbia. During the fall the adult was taken on two occasions, late in September and in the early part of October, by Mr. F. C. Pratt, captures being made in the city of Washington at light.

The known distribution of this moth includes Cuba and Jamaica, and as it is much more abundant in the most Southern States it is probable that it is of tropical origin. Our divisional records of localities include the Atlantic and Gulf States from the District of Columbia southward and westward to and including Texas. It has also been reported from Ames, Ill., Manhattan, Kans., Columbus, Ohio, Agricultural College, Mich., Buffalo, N. Y., and Hamilton, Canada. The larva has never been detected in the District of Columbia, and some doubt
attaches to the permanency of the species in this latitude. Injuries are much more pronounced in the South, and are probably not appreciable, if they occur at all, in the more northern localities mentioned.

REMEDIES.

There is little doubt that the first-hatching larvae feed for some time upon the foliage or upon the outside of the stems before entering them or the fruit. This renders them vulnerable to insecticides, and of these nothing is better than Paris green, which has already been advised against these two species. After the larvae have entered the stalks or the fruit they can not be reached with poisons.

LEAF-FOOTED PLANT-BUGS WHICH ATTACK CUCURBITS.

THE NORTHERN LEAF-FOOTED PLANT-BUG.

(Leptoglossus oppositus Say)

RECENT OCCURRENCE AND INJURY.

This plant-bug, which is a near relative of Leptoglossus phyllopus, the injurious leaf-footed plant-bug of the orange and other tropical fruits, has recently come under observation in such manner as to stamp it as an enemy to the growth of cucurbits, although not one of prime importance.

September 11, 1897, adults of this bug were noticed by the writer on canteloupes at Cabin John, Md., but no special significance was attached to the occurrence. Two days later, however, on the 13th, Mr. W. D. Hughes, of Keedysville, Md., sent us a large series of specimens, with the statement that the insect was very destructive on melon vines in his vicinity during the season.

On the 16th of the same month two colonies of this bug were found on cucumber vines near Tennallytown, D. C. It was present at this time in all stages except the egg. Later, on the 29th of September, larvae and nymphs were observed in the same locality on watermelon vines.

August 25, 1898, a colony of nymphs, mostly of the second stage, was found on squash growing on the experimental plat of this Department. The following week another colony was observed on these grounds, and during the second week of September the fourth stage of the nymphs was observed. By the 14th, or the beginning of the third week, most of the nymphs were in the fourth stage; one, however, transformed to the fifth stage on this date. The same day a colony was discovered at Tennallytown, D. C., in the same place where the species had been observed the previous year.
The first mention which I find of this species in literature is that of Dr. C. H. Hedges and the late Dr. Lintner, the former of whom mentions its occurrence in large clusters of twenty or thirty individuals upon grape and corn stalk at Charlottesville, Va., September 15, 1886 (Country Gent., Oct. 7, 1886, p. 753). Dr. Lintner states that the species was supposed to have carnivorous habits. Mr. W. H. Ashmead includes it in his enumeration of the enemies of the cotton plant (Insect Life, vol. VII, p. 320).

In addition to the correspondence previously mentioned we have received complaints of injury from Messrs. A. H. Mundt, Fairbury, Ill., and Charles L. Snyder, Oakton, Va. The former sent eggs and young nymphs found on a hedge plant during June, 1894. From the latter, material was received that had been taken on Russian apricot trees and which were puncturing the fruit and sucking the juice, the fruit presenting a withered appearance and bearing scars and marks of injury on the skin. Nymphs of this species of the earlier stages were found at this time (July, 1895) in considerable numbers on the leaves and fruit of the same tree.

HABITS OF THE SPECIES.

The natural wild food plant of this species remains to be discovered. Evidently it is a general feeder, and its observed feeding habits indicate a probable wide range of food plants.

Aside from their omnivorousness, these creatures agree in their habits rather closely with the squash bugs, their time of first appearance being later than that of either of the others. The nymphs have the same habit of collecting during the heat of the day under, or on the edges of leaves of their food plant which have become curled and dried, perhaps from their own work upon the stems, all stages being found sometimes rather closely crowded together in single colonies. In shady places and on cloudy days, and probably also at dusk, the nymphs scatter about somewhat upon the plants in the immediate vicinity of their permanent resting place, but they appear to adopt a particular leaf as a permanent abiding place and, even though disturbed, return to that leaf day by day. These insects are quite rapid in their movements, and when disturbed soon scatter in all directions, to return only when the apparent danger no longer threatens.

DESCRIPTION AND DISTRIBUTION.

This is a large chocolate-brown heteropterous bug of the family Coreidae, somewhat resembling the squash bugs, to which it is nearly related, but from which it may readily be distinguished by its more slender form, acutely pointed head, and longer haustellum, antennae, and legs, but more particularly by the peculiar leaf-like expansion of the hind legs (see fig. 9). The hind femora are much thickened and
bear two rows of strong, thorn-like teeth on the inner surface and several less prominent teeth and tubercles on the outer side. The hind tibiae are strongly dilated (sometimes considerably more than in the specimen figured) near the middle into flat expansions or plates and bear two prominent, and usually one and sometimes two less prominent, teeth on the lateral surface and several minute teeth or serrations on the medial surface. The antennae are lighter than the head, growing rather gradually lighter toward the apices, where they are yellowish-red. The apex of the scutellum is marked with a white point where the hemelytra meet, and each hemelytron is dotted near the middle and behind the scutellar spot with a similar whitish sub-medial point. The inner dilated surface of the tibiae is also marked just in front of the middle with a similar spot, and the connexivum or reflexed sides of the abdomen shows each side of the hemelytra a row of three or four similar small white marks. Length of body, 18 to 21 mm; width across thorax, 5 to 6 mm.

The sexes may be determined by the genital structure, which resembles that of Anasa. The males are more slender than the other sex.

This species may at once be separated from any other similar insect occurring on cucurbits as far north as Maryland and Virginia by the large teeth of the inflated tibiae. \textit{L. corculus}, which occurs in the same region and southward, has the tibiae less dilated and without large teeth. The southern \textit{L. phyllopus} has somewhat wider expansions of the tibiae, and the hemelytra marked just above the middle by a conspicuous transverse white band broken at its center, which marking takes the place of the two dots on the hemelytra of \textit{oppositus}. \textit{L. phyllopus} is also a little smaller and slenderer, and has the lateral angles of the prothorax more acutely pointed.

This plant-bug was described by Thomas Say in his "Descriptions of new species of Heteropterous Hemiptera of North America" in 1831 (Lec. ed., p. 327) as \textit{Anisoscelis oppositus}, from Indiana. Stål records its occurrence in Georgia and Texas, Uhler also in Indian Territory, North Carolina, Maryland, and Kentucky. It occurs as well in the District of Columbia, as previously mentioned, and in Virginia.

THE BANDED LEAF-FOOTED PLANT-BUG.

\textit{(Leptoglossus phyllopus Linn.)}

During August, 1898, this species came under notice as an enemy to cucurbits through correspondence with Messrs. W. H. McLeod & Sons, Seabrook, S. C. August 15, specimens of the insect, which is known
locally as the "blood sucker," were received with the information that they injure potato tops in the spring and devour as well fruits of all kinds, and especially watermelon by sucking the stems close to the melon. Sometimes half a dozen of these bugs may be seen at work on a single stem. They were described as a general nuisance, but had never been observed in such great numbers in previous years as to do the serious damage noticed in 1898. These bugs were also stated to attack the pecans, which were injured by lepidopterous larve, and they were believed to be at least responsible for a portion of the damage done to these trees. Attack was first noticed about the first of May, when a great many of the bugs were observed in the tops of the trees.

May 22, 1897, we received from Mr. Thomas H. Maxwell, Keller, Ga., specimens of this bug, with the statement in an accompanying letter that the species injured young pear trees, sting the fruit.

June 23, 1898, Mr. J. B. Rudulph, statistical correspondent of this Department, sent specimens from Pleasant Hill, Ala., with the statement that the species had been injurious that year and the two preceding years. There seemed to be thousands of them. On nearly every ripening peach there were from two to four individuals. The bugs were first noticed the 20th of May. Our correspondent was satisfied that all of his early peaches had been cut short by the work of this insect.

This plant-bug, which is common and injurious to various plants throughout the South, has been reported by Mr. A. L. Quaintance (Fla. Agr. Exp. Sta. Bul. 34, p. 300) as an enemy of melons in Florida. He states that frequently it "is the cause of serious trouble, by puncturing the stems of plants and sucking their sap, causing them to wilt, and, not unfrequently, bringing about their death." The same writer records attack by this species to strawberry, the fruit and tender shoots of which it injures. Nymphs were also observed on the Irish potato, and this may hence be considered a probable food plant (L. c., Bul. 42, pp. 581, 582).

This species first came into prominence as a pest through its injuries to the orange in the South, and an account of it was given, together with an illustration which is here reproduced (fig. 10), by the late H. G. Hubbard in his bulletin entitled "Insects affecting the orange," published by this Department in 1885 (pp. 168, 169). As with the previous species the dilatation of the hind tibiae exhibits considerable variation, many individuals showing more dilated tibiae than those figured. Oranges are attacked while in fruit, and injury is also reported to the strawberry, peach, plum, currant, eggplant, cotton bolls, and "even potatoes."

The normal food plant of this bug is the yellow thistle (Carduus spinosissimus), and it is recommended that thistles and like plants which might serve as breeding places for this species should be cut down and destroyed where they are found growing in the vicinity of truck or garden crops, or orchards.

The most obvious differences between this species and oppositus have been pointed out in the consideration of the latter.
The distribution of this plant-bug comprises the entire Gulf region, where it is very abundant, and includes most of the neighboring States if we may judge by its recorded distribution in Arizona, Missouri, South Carolina, and Indian Territory.

REMEDIES.

Both of these plant-bugs can be controlled by hand-picking or by capturing them in inverted umbrellas, bags, or specially prepared nets saturated with kerosene. The best time for their capture being in the early morning or late in the evening, as they are apt to be active, taking wing readily, in the heat of the day.

A certain measure of relief should be obtained by the free use of kerosene emulsion, which will at least kill the younger nymphs.

The Southern or banded leaf-footed plant-bug could be captured by the use of thistles planted about the infested gardens, fields or orchards, as these plants would attract the insects where they could be more readily dealt with than if scattered. The thistles should be cut down before the seeds mature, and the heads at least should be destroyed by burning, as a single large patch of thistles has been known to infect a wide area. It is possible that immunity from attack might be secured by the destruction of all the thistles within a large area in the neighborhood of groves of oranges or gardens, and that no further measures would be needful for the suppression of the pest than constant watchfulness that no thistles be allowed to grow in the vicinity.

NOTES ON THE STRIPED CUCUMBER BEETLE.

(Diabrotica vittata Fab.)

THE EGG AND OVIPOSITION.

In Circular No. 31, on our common striped cucumber beetle, attention was called to the absence of any published observations on the egg and oviposition. Of the normal method of the latter nothing has been positively learned, but eggs were obtained from which the following description and accompanying illustration were made:

The egg.—The egg, as would naturally be surmised, resembles that of other congeneric species which have already been described. It is smaller and more slender proportionately than D. 12-punctata, longicornis, and soror, measuring but 0.60 to 0.62 mm in length by 0.32 to 0.36 mm in width, being, therefore, only a little less than twice as long as wide. Its color is bright-lemon yellow, but this may vary somewhat with age as well as individually, as some are under observa-

tion that are orange color. The surface is finely sculptured, the hexagonal pits arranged as in longicornis as figured by Dr. Forbes (12th Rept. St. Ent. Ills. for 1882, p. 18). There appear to be by estimate about 35 pits in the entire length of the egg.
NOTES ON THE STRIPED CUCUMBER BEETLE.

METHODS OF CONTROL.

The methods of dealing with this insect that have been employed with greatest success in the past have been considered in Circular No. 31, second series, of this Division. A considerable correspondence during the year (1898) adds somewhat to our knowledge of remedial measures. With an insect so difficult to control, the testimony of our correspondents as to the efficacy of the remedies described in the circular, as well as of others employed by them, is worth recording.

DETERRENTS.

Sulphur.—May 13, Mr. Charles N. Ainslie wrote that this species is extremely numerous and injurious at Rochester, Minn., sometimes skeletonizing the leaves of mature plants (cucurbits). He states that he has successfully used for years the remedy of dusting the plants while the dew is on them with flowers of sulphur. "This adheres to the leaves, both above and below, if properly applied, and is very distasteful to the insects. I have never known this remedy to fail."

Plaster.—Mr. H. L. Frost writes that the market gardeners in the vicinity of Boston, Mass., find no trouble in protecting their plants by the simple use of plaster three or four times during the season.

Ashes and road dust.—Mr. M. J. Furlong, Fisher, Minn., writing August 14, stated that the farmers of his vicinity have no difficulty in keeping this insect in check by dusting the plants with sifted ashes or road dust while the dew is on them or after a rain. Ashes are preferred.

Mr. George Caswell, Dayton, Ohio, writes June 17, that during an active experience of about forty years he has found, all things considered, that there is nothing that will equal dry wood ashes sprinkled on the vines when damp for ridding cucurbits of insects of all kinds. A sharp lookout, he adds, is necessary, however, to prevent the insect from getting the best of the plants as soon as they appear above ground.

INSECTICIDES, ETC.

Mr. J. C. Andrus wrote May 15, that this species is injurious in Manchester, Scott County, Ill., and destructive on all species of Cucurbita, Citrulas, and Cucumis; that the beetles appear from the first to the middle of May on cotyledons and seed stems, and that they remain until the cold weather and until after the frost has killed the vines.

Paris green.—He states that a weak solution of Paris green is effective in destroying this insect when on the surface of the leaf.

Young plants are usually killed by eating below the cotyledons, and to avoid this and kill the insect the usual custom of melon growers in his district is to plant in squares once a week. Thus the planting numbered "1" is usually killed, and sometimes also the second and third plantings. As long as the insects show on No. 1 they are poisoned, and so on until a stand of plants is obtained. All four plantings are seldom killed.

13892—No. 19—4
Mr. Ernest Walker, of Clemson College, S. C., writing May 18, also states that good success in the treatment of this species accrued from the use of Paris green, particularly when applied dry, diluted with flour.

Tobacco.—Both Mr. Andrus and Mr. W. S. Stauffer contribute their testimony to the value of tobacco as a means of keeping this insect in subjection. The former states that when there is an abundant supply of tobacco waste (stems), a liberal plowing under of 1 or 2 tons to the acre is effective. Mr. Stauffer writes that during the year 1898 many of his neighbors were bothered with this insect, but that he had experienced no trouble, which immunity he attributes to the use of tobacco. In preparing soil he used tobacco ribs in lieu of manure, and as soon as the plants appeared above ground they were treated with tobacco dust, the application being repeated at intervals of a week. Plants not having the same treatment were destroyed. The ribs in the ground about the roots appeared to be more effective than the application of dust to the plant itself.

Kerosene emulsion.—Prof. W. B. Alwood, Blacksburg, Va., in a letter dated May 18, states that he uses kerosene emulsion very successfully against this species, it being simply necessary to watch the plant and observe when the first beetles appear and spray the hills early in the morning while the beetles are stupid and lie hidden under clods and around the stems in the hill, and that if this is repeated several times it enables the grower to defeat the pest. The emulsion is diluted ten times, and applied so as to thoroughly drench the soil.

Mr. A. W. Butler, Brookville, Ind., writing May 12, also states that "kerosene emulsion, prepared with sour milk or buttermilk, and applied with a whisk broom two or three times, usually gives relief" from this beetle.

Slug shot.—Mr. George Mudgett, Johnstown, Pa., writing under date of July 27, states that he has success in repelling this species from young squash plants by the use of Hammond's slug shot. Mr. Henry Holzapfel, jr., a florist of Hagerstown, Md., is also authority for the statement that this species can be overcome by the use of slug shot.

(Pyrethrum._—Mr. C. P. Gillette, in a recently published bulletin (Bul. 47, Col. St. Ag. Expt. Sta., p. 40), states that he has killed this species very successfully by dusting upon them pyrethrum from a cheese-cloth sack. To be successful, however, the treatment must be made early in the morning before sunrise.

Trap crops.—Mr. J. H. Hevey, in a letter dated November 5, informed us that late squashes on his place at Ingomar, Miss., were entirely free from this beetle, a condition which he attributed to gourd vines planted in the vicinity.

In the writer's experience this species prefers cucumbers to other plants, and it seems probable that the other cucurbit species could be protected by planting, as practiced by Mr. Hevey, cucumbers or gourds as a trap crop, using insecticides freely on the latter. If this should not suffice, immunity from attack should result if the main crop were dusted with sifted ashes, road dust, or plaster, as already advised in the circular on this species.
The wild cucumber, *Echinocystis lobata*, is also a favorite with this beetle and it would be worth trying as a trap crop.

THE WESTERN STRIPED CUCUMBER BEETLE.

Two of our correspondents write concerning what they designate as the striped cucumber beetle and by which they probably mean *Diabrotica trivittata* Mann., a species or subspecies which replaces *vittata*, which it very closely resembles, on the Pacific coast.

Mr. N. W. Motheral states that this species occurs at Hanford, Cal., but not in sufficient numbers to do any great amount of damage. He noticed particularly its occurrence upon ripe apricots.

Mr. E. J. Wickson, Berkeley, Cal., writing under date of May 19, 1898, states that this species is abundant in California on all cucurbit, associated with *D. soror*, which may be considered to be merely a geographical or racial variety of *D. 12-punctata*. The latter, as is well known, does great injury to fruit blossoms and to ripe fruits, but in this it is not, according to our correspondent, followed by *vittata*. The same is true of the destruction of the petals of many garden flowers.

A NEW WEBWORM ENEMY OF CABBAGE AND OTHER CRUCIFEROUS PLANTS.

The farmer and market gardener who grow cabbages, turnips, horse-radish, and other cruciferous crops, in the more Northern and Western States may consider themselves fortunate in having only such species as the cabbage louse, “cabbage worms,” flea-beetles, and the diamond-back moth to contend with. In the District of Columbia and nearby localities in Maryland and Virginia the cultivation of these crops has been in a most precarious condition for several years past, the most injurious species here being the harlequin cabbage bug and the cabbage looper, *Plusia brassicae*. If the cabbages are not completely stripped to the midrib and larger sideribs by the looper, as happened during the season of 1898, they are almost certain to fall a prey to the harlequin bug. Practically all of the cruciferous pests of the north also occur here, as well as farther south, and a host of other insects are usually present in fields of cabbage, horse-radish and the like and assist in the destruction of these crops.

To add to this there is now the threatened danger of the introduction from the South of a new and pernicious cruciferous pest, the caterpillar of a small moth, which last season caused great injury in Georgia in the vicinity of Augusta.

INJURY BY THIS WEBWORM AT AUGUSTA, GA.

Our first advice concerning injuries by this insect was received September 6, 1898, from Mr. W. M. Scott, State entomologist of Georgia, located at Atlanta. Specimens of the larvae and adults were received in alcohol with the statement that the species was doing considerable damage in the vicinity of Augusta, Ga., to cabbage, turnips, beets, etc.
According to the report received by Mr. Scott through correspondence with persons at Augusta, the mature insect or moth lays its eggs in the heart of cabbage and other vegetables, and the larvae soon after hatching spin a web and twist the leaves in toward the center inclosing themselves so that it is impossible to reach them with dry insecticides.

Their first appearance was noticed in August, 1897, and the species at present appears to be confined to that vicinity, although report of this or a similar species has reached Mr. Scott from Waycross, Ga.

On the 28th of September, Mr. N. L. Willet, of Augusta, sent specimens of the same larva, which is known locally as the webworm, with the accompanying statement that it had destroyed hundreds of acres of turnips, collards, and cabbages.

October 14 Mr. Willet sent additional specimens of the larvae and made the statement that this insect had cost the county of Richmond $15,000 to $20,000 during that year. Writing November 26, Mr. Scott stated that the damage had been estimated by some sufferers at $50,000 for that county.

About a day or two later we received from Augusta another lot of specimens from Mr. Scott, who wrote on the 19th of the month that one grower at Augusta claimed to have lost $1,500 through the ravages of this insect. Soon after the plant comes up, he writes, these caterpillars begin their work by eating out the bud and cutting off the leaves near the base. In the case of turnips they sometimes gnaw holes in the top of the root. Three or four days after their work is first noticed an entire crop may be destroyed. The moths are obviously nocturnal in habit since they may be attracted by light at night, as our correspondent ascertained by taking a lantern into an infested turnip field and in a few minutes capturing dozens which flew about it.

In an article written by Mr. Willet for the Augusta Chronicle of October 9, 1898, some new facts are added which are not mentioned in his letter. Under the subheading "The garden webworm," he says, in substance, that the larva after hatching spins a web over itself, leaving a hole for egress. From the protection afforded by this web house it feeds, retiring into the web when its hunger is appeased. As the larva grows it forms a larger web. This it spins either on the upper or the lower surface of a leaf. Three or four days suffice for the larvae to kill out a turnip patch.

One of Mr. Willet's friends was of the opinion that this species had been seen at work in some other years previous to 1898, but that it did little harm until that year. This is undoubtedly the truth, but that correspondents who are not familiar with the diamond-back moth and the true garden webworm (Laxostege similalis) may not confuse these insects, it should be said that their larvae as well as adults are easily distinguished though both larvae have the habit of living in webs on their host plants.

The parent moth lays her eggs in the bud and it requires from ten to fourteen days for them to hatch. In ordinary years the tender leaves
from the bud have grown three inches or more by hatching time, and
the young larva finds itself not in the bud where it can do great harm
but three inches out on the leaf. There it spins its web, and as it
remains there for some time before forming a second web the harm it
does to the growing leaf is trifling.

One reason advanced by Mr. Willet's friend for the severe injuries
committed by this species in 1898, was that during the summer there
were four or five weeks of almost daily rain. Young garden vegetables
in that time made little growth and many young roots rotted. As a
consequence that summer the hatching larva was not three inches out
on the growing leaf but directly in the bud, which it at once devoured,
thus destroying the plant. Injury was worse on turnips than on cab-
bage, this being due to the slower growth of the former crop. Such
vegetables as grew rapidly in spite of the rains were not seriously
harmed by this webworm. The gentleman whose theory we have just
propounded believes that in years of forward good-growing plant
weather there need be no great fear of injury by this insect.

THE SPECIES IDENTIFIED.

Some of the captured as well as bred moths were received at this
time, and later some of the moths issued in our rearing cages, begin-
ing November 21. They have been compared with material in the
National Museum and found to be identical with Hellula undalis Fab.,
as identified by both Professor Fernald and M. Ragonot. The National
Museum collection includes two specimens labeled "Texas, Belfrage," and
the species was described from a single female, also from Texas, by
Dr. Hulst (Trans. Amer. Entom. Soc., vol. XIII, p. 140) under the name
Botis rogatalis. The type specimens were perhaps from the same source
as those in the museum. In any case these are all the available data
regarding the occurrence of the species in Texas, and some slight doubt
attaches to its actual capture in that State, or at least to its permanent
occurrence there.

In the museum collection is a third specimen collected by Mr. D. W.
Coquillett in Los Angeles County, Cal., in October of 1891 or 1892.
This was supposedly taken at light in the city of Los Angeles, and it
seems probable that the species is also introduced at that point.

One of the Texas-labeled specimens in the National Museum bears
a slip in M. Ragonot's writing: "Does not appear to differ from European
type."

This is obviously a European importation and from the fact that we
have never heard of its injuries until the present time, it would seem
likely that it is a comparatively recent introduction. Its occurrence in
two States, Georgia and California, may be due to separate introduction.
Its known range includes southern Europe and Asia.

This moth is a member of the pyralid family, Pyraustidæ, and the
only American representative of its genus. It is, however, somewhat
nearly related to the common garden webworm, Loxostege similalis Gn.,
and the sugar-beet webworm, \textit{L. sticticalis} Linn., injurious species of similar habits which have been treated in reports of this Department in rather recent years.

DESCRIPTIVE.

\textit{The moth.}—The moth is illustrated at \textit{a} of figure 12. It is gray in color with the fore-wings marked and mottled as shown. The wing expanse is about five-eighths of an inch (18 to 21 mm). The following technical description is copied from Dr. Hulst's paper (l.c.):

Palpi, head, thorax, and abdomen fusceous; fore wings broken fusceous and fusceous cinereous; the basal space with a black spot medially, two white lines cross the wings, the first extra basal edged with dark fusceous, the outer after the typical \textit{Botis} pattern; a dark brown spot annulate with white at reniform; a dark brown sub-triangular apical patch, and a subterminal white line; marginal line black, broken; hind wings, even fusceous; beneath, lighter, lines obsolete, reniform indistinct.

\textit{Thelarva.}—The full-grown larva, figured at \textit{b} and \textit{c} of the accompanying illustration, measures a little upward of half an inch in length, being about six times as long as wide. The form is subcylindrical, tapering toward each extremity, widest near the middle—the third, fourth and fifth abdominal segments, which are nearly equal. The general color is dull opaque grayish yellow or yellowish gray, striped with broad, somewhat irregular brownish-purple, longitudinal bands, which extend from the second thoracic to the terminal or anal, segment. These are bright and conspicuous on the dorsal, and more feebly indicated on the ventral, surface. The dorsal stripes are five—a moderately wide medial one, a broader medio-lateral on each side, and a dorso lateral one, of about equal width with the median one, also on each side. On each side below are two lateral lines, faint, and interrupted toward the ends of each segment; a similar ventro-lateral line and a much fainter interrupted median line.

The head is black and shining, the V-mark well indicated, the cervical or thoracic shield is shining light, somewhat purplish, gray, and is rather variably marked with brown, which forms each side of the median stripe of the second thoracic segment, two irregular longitudinal dark brown patches, darkest and widest toward the posterior margin. On each side above the spiracle of that joint is a shorter dark patch. Near this there are sometimes two or three small dark rounded spots. The
spiral of this segment is dark brown, the remainder being concolorous with the body. The thoracic legs are more or less infuscated, and the prolegs are nearly concolorous with the venter. The entire surface of the body is sparsely covered with moderately long yellow and light brown hairs, proceeding from small and shining piliferous tubercles.

The anal shield bears from ten to a dozen round purplish spots, the most posterior one the largest and standing alone, the remainder forming a subcrescentic pattern.

The length when in natural position at rest is about 13 mm and when extended 15 mm, the width being a trifle more than 2 mm at the widest part.

The pupa.—The pupa is moderately shining light yellowish brown in color and the surface is covered with a light pruinose bloom. The eyes are dark brown, varying to black and the dorsum is marked by a median stripe. The contracted antepenultimate segment is noticeable. The anal segment terminates in two pairs of straight brown hairs. It is of rather robust cylindrical form, measuring about three-tenths of an inch (7.5 mm) in length and one-twelfth (2 mm) in width. The somewhat peculiar outline of the abdominal segments is shown at d of figure 12.

Transformation to pupa and thence to imago takes place in a rather compact cocoon composed of white silk, which in the field is presumably spun between or upon the leaves of its host plant. Those before the writer measure about three-eighths of an inch (9 mm) long and a little less than half that in width.

FURTHER OBSERVATIONS DESIRABLE.

The egg is unknown and considerable remains to be learned of the life history of this insect, its full cycle of development, the number of generations produced each year, the stage and the place of hibernation, a full list of crop and other plants attacked by it, its predaeous as well as parasitic enemies, and other data of minor import.

Reasoning from analogy we may surmise that the moths make their appearance early in the season and that when the first brood of larvae is hatched is the best time to attack the insect with insecticides, as there are probably several, perhaps as many as four generations, produced in the latitude where it is now located. Hence it is of prime importance that this time be ascertained.

PROBABILITY OF FUTURE SPREAD.

From the ease with which this pest may be transported as larva, pupa, or egg in heads of cabbage shipped from one place to another, as well as by flight of the moth, we can predict with a fair degree of certainty that its further dissemination is only a matter of time. The present seat of its depredations will undoubtedly become a center of diffusion, from which it will soon spread by flight to neighboring localities and eventually, by flight from these points or by commercial
carriage, to other Gulf and neighboring States, and it is not impossible that in due time it will gradually work its way northward from the Lower Austral region, in which it is now established, to the Upper Austral. From the proximity of Augusta to the State line of South Carolina its establishment in that State is already practically assured.

It seems probable that this pest has come to stay, yet on the other hand there exists a possibility that it may succumb, at least in a measure, to its parasitic and predaceous enemies and to climatic conditions unfavorable to its further increase. Until we know more of the distribution of the species in its supposed native home in the Old World we can not speak with positiveness of its probable future distribution in America. In any case, it is an insect that will bear close watching, and it is to be hoped that all who have the opportunity to assist in these observations will not fail to do so and to keep this Department apprised of developments.

NATURAL ENEMIES.

The natural enemies of cruciferous insect pests are of considerable value in keeping their hosts in check, and some dependence must be placed upon these agencies in restraining the undue multiplication of this webworm.

In spite of the short time that we know of its occurrence in this country, we are already certain that at least one natural enemy and probably two are at work in decimating this pest. One of these is the Tachina fly; *Exorista piste* Walk., which has been reared from the caterpillar of *Hellula undalis* at this office. The first example of this parasitic fly issued October 27.

A very abundant parasite reared with this species is the Ichneumonid, *Limneria tibiator* Cr. It was reared from the latter part of October until the last week of December. It has not been positively ascertained to prey upon this larva as it is a well-known enemy of the diamond-back moth, *Plutella cruciferarum*, which was also present in smaller numbers, but as it is also known to attack the cabbage looper, *Plusia brassicae*, and *Minois indiginella*, it seems probable that it is in reality an enemy of this webworm.

REMEDIAL MEASURES.

The logical remedy for this webworm is one of the arsenites, preferably Paris green, applied in the form of a spray, at the rate of about 1 pound to 120 to 160 gallons of water, upon the first appearance of the larvae in the season and as often thereafter as the occasion may justify.

From what we already know of the life economy of this insect it is obviously a difficult species to successfully combat. The fact that the larvae live in more or less complete concealment in webs which they form upon their food plants, and from the further fact that there are undoubtedly several generations produced during the season, it follows
that the closest observation will be necessary to keep it in subjection, that the application of poisons may be made at the proper time and not when too late to be of substantial value.

In addition, it will be a wise precaution, as we have advised our correspondents, to destroy every bit of vegetation which remains in the gardens or fields which this insect infests after the crops are harvested. This would include the complete and prompt destruction of cabbage stalks and similar refuse material, and the raking up into piles of all other débris, including weeds, and setting fire to them at once and without waiting for them to dry, by adding straw, dried leaves, or other material which will aid in their ignition.

It is not improbable that if the earnest cooperation of farmers and truck gardeners of Augusta and vicinity with the State authorities could have been obtained this pest might have been stamped out, but under the present circumstances it is likely that this insect will be troublesome again next year and in the future, and that it will spread to neighboring localities and thence throughout the South.

NOTES ON THE GARDEN FLEA-HOPPER.

(Halticus uhleri Giard).

RECENT OCCURRENCES.

In very recent years a minute black bug of the family Capsidæ, known in collections generally as Halticus bractatus, has been the occasion of more or less reported injury to beans and other vegetables, as well as to a variety of other plants.

June 29, 1895, Mr. James A. Turner, a florist of Salem, Ohio, wrote that this species, specimens of which were sent, was very destructive to smilax in his greenhouse.

August 5 of the following year Mr. G. M. Dodge, Louisiana, Mo., sent specimens with the accompanying information in a letter of that date that this species was troublesome that year, when it for the first time came under observation. It was first noticed on late potatoes, where individuals were present in great plenty. The effect of its work was to turn the leaves a pale sickly color. It was also observed to be working in clover, a small piece adjoining the potato patch being so drained of its juices that the new growth after being first cut looked white at a little distance. It was also stated to have injured tomatoes and corn. A number of other vegetables were attacked to a less extent, but by way of partial compensation the bugs also fed abundantly upon the wild horse nettle, Solanum carolinense, and on Ipomoea purpurea, or an allied species of wild morning-glory. By later mail our correspondent sent leaves of red and white clover, Ipomoea and pumpkin, showing work of this species, but the statements made in the previous letter that corn, potatoes, tomatoes, and horse nettle were also affected needs confirmation. This is especially true of corn, as it
would be an easy matter to mistake one of the flea-beetles of the genus Chatoecnema for this bug. Personally the writer is inclined to believe that the other plants mentioned are true food plants of this species, as he has found it in considerable abundance on egg-plant in the vicinity of the District of Columbia, and Mr. C. W. Mally has observed it also feeding on ground cherry, *Physalis pubescens*, plants of the same botanical family, the Solanaceae.

During the season of 1897, from the middle of July until about the middle of September, this species was noticed in abundance by the writer at Kensington and Marshall Hall, Md., on beans, peas, and cow-peas, but most abundantly on beans. At this latter date specimens were brought to this office by Mr. R. Balluff from the flower garden attached to the Executive Mansion at Washington, with the report that these bugs were injurious to several plants, particularly chrysanthemums.

During 1898 word was received from Mr. J. F. Collins, curator of the herbarium at Brown University, Providence, R. I., under date of August 14 that these bugs were found in numbers on a lawn at that place. The grass was apparently dead, and brown patches, in some cases nearly two feet across, were conspicuous and believed to be the result of the work of this insect.

LITERATURE.

The economic literature of this insect is limited. The species was originally given the name *Halticus minutus* MS. by Dr. Ph. R. Uhler (E. A. Popenoe, Rep. Dept. of Hort. and Ent. Exp. Station Kansas, Sec. Ann. Rep. 1889 [also Bul. 10, Dec., 1890], p. 212, Pl. IX, figs. 10, 11, and 12); and although the species was figured and briefly described by Professor Popenoe under that name, the technical description does not appear to have ever been published. Unfortunately, the specific name *minutus* is preoccupied, a species having been described as *Halticus minutus* Rent. from three winged females found at Singapore, Malay Archipelago (see Giard’s article, Soc. de Biol., Compt. Rend., 1892, 9 ser., vol. IV, pp. 79–82). In accordance with a well-established rule in the case of preoccupied names, M. Giard proposed the name *Halticus uhleri* for the American species.

Dr. Uhler, in a paper published in the Proceedings of the Entomological Society of Washington (vol. II, p. 378, June, 1893), contributes some notes on this insect, mentioned as *Halticus uhleri* Giard. From this the following paragraph is quoted:

This species is now known to be widely distributed in the United States, and in many localities of Maryland, Virginia, and Pennsylvania it is extremely abundant upon cabbages in the gardens. It has been found a few times by the writer upon burdock, *Lappa major*, in the neighborhood of Baltimore. The leaves of this plant were almost covered by the great number of these little flea-like hoppers, which jumped off into the surrounding soil upon the lightest approach of the collecting net. It occurs fully winged in July, but the greater number of the females appear in the unfinished state, which preserves the more robust and convex figure, with the short and completely coriaceous wing covers.
Our first economic account appears to be that, previously referred to, by Professor Popenoe, in which he mentions this species and *Agallistes bractatus* Say, in connection with their injury to beans in Kansas. They were observed during the season of 1890—

living in great numbers on the underside of the leaves of the garden bean, puncturing the tissues and sucking the sap, and by these punctures causing the death of the tissues in small, irregular patches that appear upon the upper surface of the leaf as white spots. These two species are so nearly alike, so far as habits are concerned, that they may be noticed together. They operate mostly near the ground and upon weak, low-growing sorts. They sometimes do appreciable injury to the plant. The insects of both species are able to jump many times their own length, and when disturbed they hop from the leaves like flea-beetles. They have also been observed to feed upon red clover in the manner and with the effect described above.

During the season of 1896 this species was the occasion of considerable injury to red clover and some other plants in the State of Ohio, and was so reported by Mr. F. M. Webster (see Bul. 6, n. s., Div. Ent., Dept. Agric., p. 68; Ent. News, vol. viii, pp. 209, 210).

In the *Annual Report* of the Entomological Society of Ontario for 1896 (pp. 83, 84) Mr. Webster also has some remarks on this species and its supposed mimicry of *Chaetocnema parcepunctata*, which also occurs on red clover.

In the article first quoted the species is stated, on the authority of Mr. C. W. Mally, to have been found also feeding on cucumber near Cleveland, and to occur in Iowa. Particular attention is called to the fact that farmers, "without a single exception," call these insects flea-beetles, an error which is excusable when we consider the close resemblance of the saltatorial and wingless females to species of *Chaetocnema* and *Epitrix*. In the second article, which bears the title "*Halticus bractatus* Say," and which is illustrated by a plate of two figures of wingless and winged females, some additional facts are given, including a long list of food plants. Unfortunately, Mr. Webster has designated his fig. 1 as the male, an error which becomes readily obvious when comparison is made with the illustrations accompanying this article.

The illustrations furnished by Professor Popenoe in all probability represent the two sexes, male and wingless female of one species, an opinion which has already been expressed by Mr. Webster, and one in which Mr. Otto Heidemann of this Division, who has made a specialty of the *Capsidae*, fully concurs.

DESCRIPTIVE.

Say's species, originally described by him as *Capsus bractatus*, and evidently drawn from the winged female (Complete Writings, Lect. ed., vol. i, p. 348, 1859), differs from the form under consideration so far as has been pointed out only in size, the former being the larger. In specimens before the writer of the brachypterous female of both species, *bractatus* measures about 2 to 2\(\text{\textfrac{1}{2}}\) mm in length, while *uhleri* is but little
more than half that. The color of all forms is shining black, the lighter portions of the antennae and legs shown in the illustration being pale yellow. The hemelytra are ornamented with rather sparse scale-like tufts of yellow hair, arranged as in the illustration. These are readily detached, and hence apt to be wanting in old dried material. The dimorphic brachypterous or wingless female of uhleri is shown at a, the winged female at b, and the male at c. The true male, as identified by Messrs. Uhler and Heidemann and verified by specimens captured in coitu, is much narrower and shorter than the full-winged female, and the hemelytra are subparallel, not roundly oval as in the female. The front and middle femora are yellow, whereas the female has the femora with only the knees yellow or dull whitish.

DISTRIBUTION.

The following localities are known for this species: Grimsby, Ontario, Canada; Holderness, N. H. (Heidemann); Providence, R. I.; York County, Pa.; Vineland and Egg Harbor, N. J.; Newark, Del. (Beckwith); Washington, D. C.; Baltimore, Kensington, and Marshall Hall, Md.; Salem, Cleveland, and elsewhere in Ohio; Cobbs Island, (Heidemann), Berkeley Springs, Va.; Rock Island, Ill.; Iowa; St. Louis and Louisiana, Mo.; mountains of North Carolina; Orange Springs, Fla.; Riley County, Kans.; American Fork Cañon, Utah.¹

Of the localities above given, all except those personally credited or represented by specimens have been previously recorded and credited by Dr. Uhler (l.c.) and others or have been mentioned in the preceding pages. The above localities show a distribution which ranges from what is known as the Gulf strip of the Lower Austral life zone to the Boreal zone. There are no reasons for the belief that this species is other than native to this country.

ADDITIONAL FOOD PLANTS.

In addition to the food plants already recorded, the following are given by Mr. Webster (l.c), based on Mr. Mally’s observations: Prickly lettuce, Lactuca scariola; ragweed, Ambrosia artemisiaefolia; white vervain, Verbena urticaefolia; narrow plantain, Plantago lanceolata; P. rugelii; selfheal, Prunella vulgaris; smartweed, Polygonum hydropiperoides; mares tail, Erigeron canadense; thistle, Carduus lanceolatus; sticktights, Bidens sp.; low mallow, Malva rotundifolia; yellow sweet clover, Melilotus officinalis; sour grass, Oxalis stricta; Aster sp.; crab grass, Panicum sanguinale.

THE LIFE HISTORY NOT WELL KNOWN.

This species, like many other injurious forms, is subject to considerable fluctuation in numbers in different seasons. During 1898 it was extremely rare in the vicinity of the District of Columbia, only a few specimens being found when sought for on clover, which appears to be one of its favored host plants. It practically disappeared late in September, as no bugs could be found when sought for in early October.

Mr. Heidemann has observed this species (principally on red clover) in the District of Columbia as early as May, but it may occur somewhat earlier, and he has expressed the opinion to the writer that there are probably two generations in this latitude. He also inclines to the belief that injury to potato and similar garden crops is usually in the vicinity of clover fields and apt to be the direct outcome of the cutting of the clover, which results in some instances in the practical withdrawal of the insects’ natural food supply, thus forcing them to attack the nearest or most available crops. Mr. Webster has said that this species might hibernate in the adult stage, although it would seem that it usually passes the winter in the egg; but this is practically mere conjecture, as no positive observations on these points which can lead us to generalize with accuracy have been made. He has noticed its occurrence in greenhouses and kept specimens of the adults living in the insectary at Wooster, Ohio, during the winter. From this it is not improbable that still another generation, if we can prove that two are produced out of doors, might be developed in a warm indoor temperature.

As no common name appears to have become attached to this insect, the writer proposes that it be known as the garden flea-hopper.
The most feasible method of treatment that suggests itself is the use of kerosene in some of its forms. A spray of kerosene emulsion, as strong as the plant will bear without injury, would doubtless be effective in the destruction of the bugs in all stages, or they might be jarred from the plants upon which they are feeding onto sheets saturated with kerosene or into pans of water on which a thin scum of kerosene is floating.

For the mechanical method of treatment it would be preferable to go over the infested plants early in the morning or late in the day before dusk, when the insects are less active than in the bright sunlight.

THE IMBRICATED SNOUT-BEETLE.

(Epicerus imbricatus Say.)

RECENT INJURY.

Specimens of this snout-beetle were received May 10, 1898, from Mr. David Font, Garfield, Ark., with the information that they were very destructive to strawberry plants, eating the leaves and afterwards the entire stem. They appeared in that vicinity about April 10. From material received at this time eggs and larvae were obtained, from which certain studies were made and the accompanying illustrations prepared.

There is at least one other record of this beetle being injurious to strawberry—that published by Messrs. Osborn and Mally (Bul. 32, Iowa Agr. Coll. Expt. Sta., p. 395). Although the species, in its adult state, at least, is what is termed a general feeder, these two instances will serve to secure it a permanent place in the list of enemies to this fruit. From its wide distribution and its omnivorousness it has received frequent mention in literature in spite of its being only periodically destructive, and only in the adult condition so far as known, since the time of its first notice as an injurious insect thirty-five years before the time of the present writing.
DESCRIPTION OF THE SPECIES; DISTRIBUTION.

The imbricated snout-beetle, as its name indicates to the student of entomology, is a member of the superfamily Rhynchophora, the weevils or snout-beetles, and of the family Otiorhynchidae, or short-snouted weevils.

The beetle.—The beetle was first described by Thomas Say in the year 1824 (Journ. Acad. Nat. Sci. Phila., vol. III, p. 317), from Arkansas, as Liparus imbricatus. It is one of our largest weevils, measuring from about three-eighths to nearly half an inch in length, and is of the general appearance indicated in the figure at a and b. The body is covered with minute imbricated scales (whence the insect's name), the lighter portions appearing as brownish gray, the darker as light brown, the latter arranged on the elytra in bands, as shown. The head is prolonged into a rather short, broad snout, with elbowed antennæ, and the elytra into a point, as shown at b.

Distribution.—This is a widely distributed species, occurring in most of the States, except the more northern ones, east of the Rocky Mountain range. In the Boreal zone it does not appear to be represented, and in the transition rarely, if it occurs there at all.

The following list of localities is taken from divisional and published records, from material in the National Museum (which includes the Hubbard and Schwarz collection) and in the writer's collections: New York City (vicinity); Camden and elsewhere in New Jersey; Newark, Smyrna, Felton, Del.; District of Columbia; Baltimore, Locust Grove, Md.; Strasburg, Oaktown, Herndon, Rosslyn, Falls Church, Va.; Madisonville, Stillwater, Tenn.; Horse Cave, Ky.; Garfield and elsewhere in Arkansas; Agricultural College, Mich.; Cramer, Ill.; Iowa; Louisiana; Sedalia, Hallsville, and elsewhere in Missouri; Tonganoxie, Clay County, Kans.; Stillwater, Okla.; Catooza County, Ga.; Cypress Mills, Columbus, New Braunfels, San Diego, and elsewhere in Texas; New Mexico; Colorado; Wasatch, Utah.

The egg.—Elongate, more than three times as long as wide, somewhat variable in outline owing to close deposition, subcylindrical, sometimes slightly curved on one side, broadly rounded at each end; surface smooth, shining, with no apparnant sculpture; color light dull yellow, becoming subtranslucent, first at base and afterwards at apex; consistency rather firm, being readily detached from the surfaces of deposit. Length: 1.50 to 1.60 mm.; width 0.48 mm.

The egg is figured in outline at e of the accompanying illustration, f showing an egg mass.

The newly hatched larva.—The young larva when first hatched is uniform whitish yellow and no ocelli are visible, but the color deepens in a day or two, the head becomes honey yellow, the thoracic shield becomes evident and a pair of ocelli placed as shown in the illustration (c and d) may be plainly seen on each side. The mouth-parts also become darker, the tips of the large, prominent mandibles showing
dark brown in color. The entire body, including the anterior portion of the head, is sparsely covered with whitish pubescence. The head is retractile and there are no signs of legs, but in their place each thoracic segment bears on its ventral surface a pair of rather strong bristles which are evidently of assistance to the larva in crawling. In the contracted position assumed upon death the larva measures about 1.5 mm, the diameter being about one-third as much.

The mature larva and the pupa are unknown.

LITERATURE.

The first notice of this species published was by the veteran economic entomologist, Benjamin D. Walsh, who gave an illustrated account of it in the Prairie Farmer of July 18, 1863 (p. 37), based on the statement of an Iowa correspondent, who wrote that the beetles were "doing great injury to apple and cherry trees, as well as gooseberry bushes."

In the year 1871 the late Dr. Riley published in his third Missouri Report (p. 58) a short note on this species, drawing attention to the fact that the beetle is quite frequently met with on different fruit trees, doing considerable injury to the plants mentioned by Walsh, in gnawing the twigs and fruit. He stated that the species is a native of the more Western States and found much more commonly in the western part of Missouri, in Iowa, Kansas, and toward the mountains, than on the "eastern side of the great Father of Waters."

The species next attracted attention in 1879, receiving mention in Professor Comstock's annual report as entomologist of the Department of Agriculture in that year (p. 249). Beetles were received June 1, 1879, from Madisonville, Monroe County, Tenn., with the remark that they were injuring onions. Onion stalks accompanying the communication were riddled with holes gnawed by the beetles. Later, a report was received from Sweetwater, in the same county, that these beetles had injured a field of 2 acres of onions, one-fourth of the crop having been destroyed. The beetles were stated on the authority of Mr. Thos. G. Boyd to have made their appearance on early vegetables as fast as the crops came up. They were noticed upon onions in February and were reported to have destroyed radishes, cabbages, beans, watermelons, muskmelons, cucumbers, squashes, corn, and beets.

The following year the species was reported by Dr. Riley to have been received from Felton, Del., with the statement that it was "destroying early cabbages, eating the leaves and sucking the juice from the stems." The fact was also brought forward that this species was quite injurious to corn in 1873 (Amer. Ent., vol. III, p. 200). In the annual report of this Department for 1884 (pp. 300, 301) the same writer also treated of this beetle somewhat at length, but without adding any new facts worthy of mention to what has been previously reported.

In 1882 Prof. S. A. Forbes found this species feeding on red clover blossoms (12th Rept. St. Ent. Ill., p. 104), and in 1886, in a paper before
the American Association for the Advancement of Science, mentions its feeding on pear leaves. He also ascertained that the insect laid its eggs (in confinement) on leaves, concealing them by gumming the leaves together. Later, in 1890 (16th Rept. State Ent. Ill., p. 76), he demonstrated by experiment and dissection that the species feeds freely on grasses.

Brief mention of attack on the foliage of fruit trees at Herndon, Va., in 1887 was given in Insect Life (vol. i, p. 59).

In 1889 Dr. Clarence M. Weed gave an account of this insect (Ann. Rept. Ohio Agl. Expt. Sta. for 1888, pp. 167, 168), together with an abstract of a letter from Mr. J. P. Coulter, of Cramer, Ill., who reported its abundance on potatoes, and that it was "fully as destructive as the Colorado potato beetle, from its habit of cutting off the stalks, with their soft, undeveloped leaves."

Injury to young apple trees was reported in 1891 from Stillwater, Payne County, Okla. (Insect Life, vol. iv, p. 77).

In the Eighth Annual Report of the Kentucky Agricultural Experiment Station for 1895, Mr. H. Garman mentions reported occurrence of this species on strawberry at Horse Cave, Ky., April 30, of that year.

In Colman's Rural World of June 6, 1895, (p. 177), is a short notice, consisting of a letter of inquiry from a correspondent in Hallsville, Mo., and answer by Miss M. E. Murtfeldt. Specimens of the beetles were received by the latter and identified as this species, and the report was given that they were found in some numbers on young pear and apple trees.

Several other notices than those above mentioned have appeared in regard to injuries by this insect, but as they add but little to our knowledge of the insect's habits, they need not be quoted here.

DIVISIONAL AND PERSONAL NOTES.

Among divisional notes other than those published and previously mentioned are records of the receipt of this species from various correspondents, among which may be mentioned the following (all communications were accompanied by specimens of the beetle):

May 6, 1891, from Mr. H. J. Lamb, Stillwater, Okla., destroying young growth of apple trees. April 24, 1893, Mr. Theo. Pergande found between the terminal leaves of Cassia marilandica growing on the flats between the canal and the Potomac River above Georgetown, D. C., two batches of eggs belonging to this species. The leaves were glued tightly together with the eggs between them in the same manner as is always observed when eggs have been obtained in confinement, being placed more or less regularly in rows. April 25, 1895, the beetles were reported in a raspberry patch near Strasburg, Va. May 13, 1895, from Stark Brothers, Louisiana, Mo., found on apple. May 19, 1896, Mr. M. H. Beckwith, Newark, Del., reported that the beetles were feeding on plum and peach near Smyrna, Del. June 1, 1897, from Mr. T. J. 13892—No. 19—5
Shalcrop, Locust Grove, Md., who stated that the beetles were injuring tomato plants at that place. The beetles were taken May 17.

The writer has noticed on various occasions the abundance of this beetle on the leaves of young locust and blackberry, but particularly on the former. Attempts to rear the species were unsuccessful, though undertaken on two different occasions. Both Mr. Pergande and the writer are of the opinion that the larvae will be found eventually to feed chiefly at the roots of some leguminous plant and quite possibly on Cassia and perhaps locust, as the eggs were found in nature on the former and the beetles occur commonly on the latter wild food plant.

The beetle possesses the habit of "playing 'possum" or feigning death, so prevalent in the rhynchophorous group, to a remarkable degree, dropping off its food plant upon the slightest disturbance, and remaining with its legs and antenna tightly appressed to its body for some time before resuming activity. The writer has observed this insect in rather more abundance upon plants growing on sandy soil, and its colors harmonize with the same upon which it drops.

Egg Laying.

A pair of this species received May 14, 1898, from Garfield, Ark., and sent us under date of May 10, were placed in a small rearing jar with leaves of strawberry May 16, and egg deposit ensued, as will be shown by the accompanying figures, each numeral representing a separate batch of eggs. No eggs were found after May 24 until June 3, the beetles continuing paired and evidently copulating until that time. It is not impossible, however, though hardly probable, that eggs were deposited during this time and escaped observation, as it was noticed that after the death of the male, which occurred June 11, the female frequently turned over one of the serrated points of a leaf and cemented it so neatly to the leaf that it would not readily be noticed. In one case a nidus thus formed was cut by the weevil from the leaf.

<table>
<thead>
<tr>
<th>Date</th>
<th>Number of batches</th>
<th>Date</th>
<th>Number of batches</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 17-19.</td>
<td>5.6</td>
<td>June 18.</td>
<td>19</td>
</tr>
<tr>
<td>May 19-20.</td>
<td>4.7</td>
<td>June 19.</td>
<td>9</td>
</tr>
<tr>
<td>May 21-22.</td>
<td>1, 2, 14, 3, 21</td>
<td>June 20.</td>
<td>3</td>
</tr>
<tr>
<td>May 23-24.</td>
<td>11, 21, 24</td>
<td>June 21.</td>
<td>10</td>
</tr>
<tr>
<td>May 25-June 2.</td>
<td>6</td>
<td>June 22.</td>
<td>13</td>
</tr>
<tr>
<td>June 3.</td>
<td>19</td>
<td>June 23.</td>
<td>0</td>
</tr>
<tr>
<td>June 4.</td>
<td>19</td>
<td>June 24.</td>
<td>5, 7, 3</td>
</tr>
<tr>
<td>June 5.</td>
<td>11</td>
<td>June 25-26.</td>
<td>9, 7, 13</td>
</tr>
<tr>
<td>June 6.</td>
<td>6</td>
<td>June 27.</td>
<td>0</td>
</tr>
<tr>
<td>June 7.</td>
<td>15, 9</td>
<td>June 28.</td>
<td>15</td>
</tr>
<tr>
<td>June 8.</td>
<td>9</td>
<td>June 29.</td>
<td>2, 22</td>
</tr>
<tr>
<td>June 9.</td>
<td>9</td>
<td>June 30.</td>
<td>11</td>
</tr>
<tr>
<td>June 10.</td>
<td>11</td>
<td>July 1.</td>
<td>19</td>
</tr>
<tr>
<td>June 11.</td>
<td>8</td>
<td>July 2.</td>
<td>18, 6</td>
</tr>
<tr>
<td>June 12.</td>
<td>19, 4</td>
<td>July 3-4.</td>
<td>8, 10, 4</td>
</tr>
<tr>
<td>June 13.</td>
<td>17</td>
<td>July 5.</td>
<td>5</td>
</tr>
<tr>
<td>June 14.</td>
<td>20</td>
<td>July 6.</td>
<td>0</td>
</tr>
<tr>
<td>June 15.</td>
<td>12</td>
<td>Total</td>
<td>540</td>
</tr>
<tr>
<td>June 16.</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June 17.</td>
<td>7, 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Up to June 29 the writer had been under the impression that oviposition occurred chiefly toward the close of day and in early morning, and as a consequence no effort was made to observe egg deposit. The rearing jar was usually inspected early each morning, although sometimes later, and the female almost invariably dropped from the leaf and feigned death in the usual manner. On this morning, however, she held her ground, and it was seen that she had just begun egg deposition, a single egg having been laid. She had first joined the leaves together, and when found had her ovipositor and terminal segments extended between them.¹

This individual died July 7, having lived, to our certain knowledge, an active life of fifty-seven days, in addition to the time before and during hibernation. In this time she deposited eggs almost daily. It will be seen by the above figures that a total of 540 eggs were laid in this time, and it is probable that the entire quota might reach as high as 600, as there is little doubt that egg laying had at least begun before the receipt of this individual and her partner, and dissection showed at least a dozen more eggs un laid. Small masses of eggs, it will be observed, are rather the exception, the largest mass deposited being twenty-four.

Eggs that were laid May 19 hatched June 3, or in fifteen days; another lot, laid at this latter date, hatched June 15, or in twelve days; and a third lot, deposited July 1, hatched on the 11th of that month, or in ten days. The difference in time is, of course, to be accounted for by the difference in temperature, the last period being warmest. All the eggs deposited were fertile.

REMEDIES.

This weevil will yield to the same remedies employed against the Colorado potato beetle—arsenicals applied either dry or in spray at the rate of a pound to 100 gallons of water; or the beetles may be jarred from the plants onto specially prepared cloths or other receptacles freely saturated with kerosene.

THE BROWN FRUIT-CHAFER.

(Euphoria ina Linn.)

This species was first observed during the season of 1898, on April 1. Two individuals, one a female, were captured soon afterwards and placed in a rearing jar with moistened sand, in the hope that a sufficient number of the beetles would afterwards be obtained to warrant

¹In the deposition of its eggs this species resembles the parent of the apple-root borer, Leptops hopei, an Australian weevil of destructive propensities. This species is described by Mr. C. French (Handbook of the Destructive Insects of Victoria, pt. ii, p. 94) as ascending the branches of the apple tree at night and with her legs folding the leaves together, fastening them with a glutinous secretion; then after depositing her eggs she holds the folds of the leaf together until they stick.
experiments. One beetle died in a few days, and as no more were captured no further attention was paid the matter until May 31, when examination of the sand showed the presence of both eggs and larvae—six of the former and three of the latter. All of the remaining eggs had hatched by June 2, when another had been deposited. From this lot the accompanying observations were made and the descriptions which immediately follow were drawn.

DESCRIPTIVE.

The egg.—The egg is nearly spherical, resembling in miniature those of certain of the smaller owls. It is of quite firm consistency and elastic. The color, when newly laid, is perfectly white, and rather moderately polished, but with age this becomes darker gray and opaque. There is no visible sculpture. The size, when freshly deposited, is about 1.75\text{mm} by 1.50\text{mm}, but by absorption this becomes, immediately before hatching, about 2.65\text{mm} by 2.18\text{mm}, or at least a third larger. An egg is shown in outline at \textit{b} of figure 15.

The newly-hatched larva.—The larva, when first hatched, is nearly white in color and moderately hairy. The head is dull yellowish, as are also the terminal joints of the legs. The mandibles are brown, becoming dark toward the extreme toothed tips, and, by comparison with those of Lachnosterna, are small. The general appearance of this stage is represented in the illustration at \textit{c}. When extended at length, it measures about 4.5\text{mm} by 1.7\text{mm}.

The mature larva.—The larva when fully matured presents the appearance of \textit{d} of the accompanying figure. It is far more robust than Lachnosterna, the abdomen particularly being much swollen, while the legs are much shorter, the head smaller, and the mandibles less prominent, in which respects it resembles Allorhina. The spiracles are prominent, and in front of the spiracle of the first thoracic segment there is a yellow corneous plate of subtriangular outline. Upon attaining full maturity the larva reaches a great size; the skin becomes distended with the contents of the abdomen, which imparts to the lower moiety of the body a dull deep leaden hue not indicated in the illustration. A larva
which was measured when exactly 2 months old was when extended 26.5 mm long and 9.5 mm wide, but when it had increased to its maximum size it was somewhat over 30 mm in length and 10 mm in width, being a little more than a third wider than long. Before transformation to pupa the larva shrinks to about half its former size, and with the absorption and discharge of the contents of the abdominal canal becomes light yellow in color. The head is moderately shining deep honey yellow, with the lower portions darker, deep brown at the sutures, the mandibles nearly black. The legs are lighter, as also the prothoracic shield.

The pupa.—The pupa is sufficiently well shown by the accompanying illustration (fig. 15, e) to obviate the necessity of a detailed description. It is light yellow in color and takes on a brownish tint before transformation to adult, the elytral pads, legs, and mouth-parts being a shade darker than the other portions of the body. It measures about 1.5 mm in length and 0.9 mm in width at the widest part, which is near the middle.

Transformation to pupa takes place in a substantial cocoon, which is smooth and regularly oval within and rough and irregular on the outer surface. The cocoon has a protuberant spot on one side, probably the under surface, and due perhaps to the excess of fluid which is voided by the larva during its construction. The cocoons before me measure from 17 to 20 mm in length and 14 to 16 mm in width on the outer surface. In transforming the larva pushes its shed skin down into a bunch at the anal extremity.

The adult.—The general appearance of the adult beetle is shown at a of the illustration. It is of robust form, with a triangular thorax. The ground color is brown; the thorax is nearly black, with a few yellowish markings toward the base of the elytra; the elytra and scutellum are light yellowish brown mottled with black markings arranged in a variable pattern, but usually approaching that shown in the illustration. Nearly the entire surface, except the elytra, is covered with a coating of yellowish gray pubescence, which is long and thick on the under surface, particularly on the thorax and legs. Its length is from one-half inch to considerably more (12 to 14 mm), and the width is about five-eighths of an inch (7 to 8 mm).

This species occurs practically everywhere in the United States east of the Rocky Mountains, as also in Canada. It is most abundant in the North, its place in the South being filled by other more numerous congeneric insects of several species.

OVIPOSITION.

The record of egg laying as observed is as follows:

April, probably none; May, nine; June 2, one; 3, four; 4, two; 6, five; 7, 7; 8 to 10, 7; 11 and 12, seven; 13, four; 14, three; 15, one, when egg laying ceased, the beetle dying about the 19th. During three days from the 8th to the 10th this beetle was free in the office room, having escaped from the rearing jar in which she had been
confined. On the 9th a peculiar buzzing sound, as loud as that of the largest bumble bee, was heard near the window, and again on the 10th, when the beetle was discovered and returned to the jar.

This individual had been supplied with strawberries, the only fruit available, but had not partaken of these or of any food whatever. The sand with which her rearing jar was supplied was kept moist, and a certain degree of nourishment may have been furnished by this. Practically speaking, she lived eighty days without food, during which time 36 eggs were deposited. Upon dissection of the beetle a large number of eggs in different stages of development were found, upward of a hundred by estimate, but as decomposition had set in the exact number was not ascertained.

HABITS OF THE LARVA.

The value of recording fragmentary observations, if careful and conclusive, is well exemplified in the case of the present species. The writer's first notes on the larva were the first to shed any light on its true habits, and were totally at variance with those previously conceived by entomologists. LeBaron, who wrote of this species in 1874 (Fourth Ill. Rept., p. 91), was of the opinion that the larva lived in rotten wood. The general impression of naturalists was, I believe, that the larva fed upon rootlets of grass and other herbaceous plants, while certain few expressed the opinion that the larva was in some manner dependent upon the friendly assistance of ants, this belief being based upon their known occurrence in ants' nests.

The larva, as was first pointed out by the writer in volume VII of Insect Life (p. 272), feeds, like that of the allied Allorrhina nitida, or green June beetle, in manure and in rich soil containing an abundance of humus, and not upon the roots of grass and other herbaceous plants, as was previously supposed. The observations of the writer on the species referred to were made in July and August of 1890, and were interrupted as previously explained by an unlooked-for absence.

Mr. M. V. Slingerland during the year 1896 obtained larva in manure, and succeeded in rearing the species and in making certain observations and descriptions of the same, the details of which have been brought together in an illustrated article published in the Canadian Entomologist for March, 1897 (vol. xxix, pp. 50-52).

Mr. Slingerland wrote that "the dull leaden hue of the body, due to the contents of the food canal, indicated that its food consisted of dead vegetable matter rather than living roots." There was no evidence of the larva having fed on the roots of living plants.

Dr. J. A. Lintner, in his twelfth report as State entomologist of New York for 1896 (1897), page 314, states that according to the observations of Botanist Peck larva in manure were placed on a few hills of corn in a garden, and that on the following day one of the hills was noticed to have been cut down as if by cutworms. Upon digging around the stalks two larva of Euphoria but no cutworms were discovered—
evidence, it was thought, that these grubs committed the injury. Even though this were true, which is not probable, it would not conflict with the statement that the normal food of the larva is manure and humus and the plant-feeding habit exceptional.

Among the unpublished notes of the late Dr. Riley, made many years ago and on file in this Division, are some remarks which if published earlier might have thrown some light upon the life habits of this species, or at least suggested what the natural habits of the larva were. July 10, 1874, larvae which were afterwards reared to the adult were found to have eaten the balls of manure made by the common tumble dung beetle, *Canthon larvis*, which happened to have been placed in the same tin box. Later balls of manure of the tumble dung were furnished to these larvae, which fed upon them.

The other notes will be briefly mentioned in their proper place later on in this article.

About a score of the larvae of nearly the same age (some having increased somewhat in size from the small amount of nutriment which they had been able to obtain from the sand in which they had developed) remained after a sufficiency was preserved for permanent deposit in the National Museum collection. These were used in experiments to determine the food habits and injuries that might be effected by them. The experiments began June 27. One lot was placed in a small pot with a small strawberry plant, another with a strawberry plant which did not look particularly thrifty, and a third was placed in a rather large pot with manure and earth, and a fourth was placed on a patch of strawberries on the experimental plat.

The sickly plant did not wholly recover, but the healthy one, when examined July 22, was found to be still sound in every particular. In both of these pots the larvae had reached a length of a little over half an inch (14 mm). In the manure the larvae were much larger, having attained a length of nearly an inch (23 mm). No evidence of the presence of the larvae in the strawberry patch could be detected.

Previous experience, together with these experiments, although on so small a scale, very conclusively prove that the larva of this species is not injurious except perhaps under the most exceptional circumstances, and that it feeds practically exclusively on humus and not upon roots, thus agreeing in its habits with the observations of Dr. Howard and others on the allied *Allorrhina nitida*.

The larvae travel on their backs with equal facility to those of the latter species, but appear to possess rather less speed; still, with the assistance of the rows of short stiff bristles on the dorsum, they crawl by undulating motions with considerable rapidity.

Of other points in the life history of this species Mr. Slingerland wrote:

Doubtless the beetles hibernate, but whether egg-laying takes place in fall or spring is not known. The fact that manure piled in August and October contains many nearly full-grown grubs the next June indicates that the eggs are laid and
hatched in the fall. Otherwise the grubs must develop very rapidly after hatching from eggs laid in the spring. There seems to be one brood of the insect in the course of a year.

All of this is true except the surmise in regard to the eggs being laid and hatched in the fall. Egg-laying probably begins as early as the first of May, and perhaps earlier, which will account for the larvæ being observed so well developed in June. The period of egg-laying is, of course, variable. Eggs that were laid June 2 hatched on the 13th, or in eleven days.

From larvæ that hatched from the egg during the third week of June a pupa was obtained which would have transformed to beetle about September 8. The period of the larvæ under observation was between eight and nine weeks from hatching to transformation to pupa, and the pupa stage, according to Mr. Slingerland’s observations, is about sixteen days; larvæ that transformed to pupæ July 28, he says, issued as beetles August 13. These figures would give a period of the life cycle from the deposition of the egg to the maturity of the beetle of about twelve weeks.

Experience shows that the beetles normally, if not always, leave their pupal cells in the fall to feed, and that the species hibernates in the adult condition.

FOOD HABITS OF THE BEETLE.

Although this species is not injurious in its larval state, it is quite the contrary with the adult, but even here injury is probably often very much exaggerated, as the mouth parts of the beetle, as well as those of other species of the same group of Scarabæidae, the Cetoniini, are formed rather for sipping or lapping of vegetable juices than for boring or chewing. The beetles feed indifferently upon the sap which exudes from wounds in trees and upon the juices of over-ripe or injured fruits or other succulent vegetable growth and upon pollen. Their active life as beetles is comparatively short in the fall of the year. They appear toward the end of August and the first of September, the date of appearance varying with locality; but in a short time, a matter of about two or three weeks, they cease feeding and enter the earth for hibernation.

Owing to the large size of the beetles and their habits of congregating in immense numbers they are often the occasion of considerable alarm, and very frequent complaints of injury are received and are recorded of them. More often it is apprehension of danger rather than the actual injury which induces the fruit grower or farmer to write for information as to the probabilities of damage.

The beetles have an especial fondness for the ears of ripening corn, particularly sweet corn, and are often accused of boring into the husk to get at the kernels within. Peaches and apples are very subject to attack, and persimmons, tomatoes, and cotton bolls have been reported as being injured.
In some cases, according to Dr. Otto Lugger (Second Annual Rep. Ent., Stat. Expt. Sta. Univ. Minn. for 1896, p. 27), the beetles have eaten off the flowers of apple, plum, strawberry, blackberry, raspberry, and other fruits, and have destroyed the male flowers of corn. Still another form of damage reported by Dr. Lugger is to apples and berries exposed for drying.

The beetles also frequently attract attention through their great numbers on fruit trees and choice shade trees. Often the beetles settle upon the flower heads of golden-rod and thistle, but their occurrence on flowers is not so noticeable as upon fruits.

Messrs. Osborn and Gossard have recorded some interesting observations and the results of experiments to ascertain the possibility of the beetles attacking ears of corn that are uninjured by birds or other insects. Beetles were taken in abundance on *Ambrosia trifida*, to which they appeared to be attracted by the ripening seeds, and confined in different lots with ears of corn, the conclusion being reached that the beetles are capable of entering uninjured ears of corn for the purpose of feeding, but that the habit was exceptional and not liable to occur except in the event of a deficiency of more available and appropriate food. (Bul. 15, Iowa Agr. Expt. Sta., Nov., 1891, pp. 255-258.)

Until recently this species has been known in literature as the Indian cecotonia. It has also been called the “bumble flower-beetle” and the “common hairy rose-beetle.” In the note by the writer, previously mentioned, the insect for want of a better name was called “brown sap-chafier.” It has been a somewhat difficult matter to decide upon an appropriate name. The writer believes that, everything considered, “fruit-chafier” would be more fitting for this class of insects, as it is by their injury to fruits that attention is most often called to them. The name of “brown fruit-chafier” is therefore suggested for the species.

NATURAL ENEMIES.

The larva are peculiarly hardy and evidently able to take care of themselves without trouble; still, although their life is so short, they are liable to infestation by the same insect and other enemies which destroy the larvae of other sorts of white grubs. Of this number is an undetermined species of Tyroglyphus, which was found in a cocoon upon a pupa of the lot reared. Among the notes of Dr. Riley I find mention of a similar instance of the occurrence of Tyroglyphus, found also upon the pupa. The note is dated July 10, 1874.

July 4, 1896, Mr. E. A. Schwarz, of this Division, brought a few larvae, which were afterwards reared to this beetle, found under a stone at Berkeley Springs, W. Va., with which he noticed several specimens of the larva of a species of Typhia, perhaps *T. ornata*, a well-known hymenopterous enemy of *Lachnosterna* larva. A *Typhia* larva is also recorded in Dr. Riley’s notes as having been observed July 25, 1874, attached to a young larva of this Euphoria.
INSECTS INJURIOUS TO GARDEN AND ORCHARD CROPS.

REMEDIES.

Hand methods are about the only available remedies for the beetles when they occur in sufficient abundance to be troublesome. The use of insecticides on ripening fruit that is soon to be eaten is practically out of the question. During the heat of the day, particularly in the bright sunlight, the beetles are active, but in the shade when feeding they can readily be captured by jarring them from the trees or other plants upon which they occur into bags or nets. A simple screen of mosquito netting applied over drying fruit will afford ample protection against these insects and others liable to be attracted.

Fortunately, the species is one of many that are only periodically numerous enough to be troublesome, and therefore it is not an insect that need often be the cause of serious alarm.

BIOLOGIC NOTES ON THE MAY BEETLE, LACHNOSTERNA ARCUATA SM.

It is a matter of common knowledge that until within the last decade the common white grub of the Northern and Middle States was very generally believed to be the offspring of that species of May or June beetle known as Lachnosterna fusca Fröhl. About ten years ago, however, chiefly through the studies of Dr. J. B. Smith,¹ it was ascertained that only the common Northern species of white grub belonged to L. fusca, while that found most abundantly in the Middle States, and particularly in and about the District of Columbia, was an undescribed species, to which was given the name arcuata, from the arcuate process on the penultimate segment of the abdomen of the male beetle. A few years later a very careful and elaborate study of white grubs of certain species of Lachnosterna and of Cyclocephla immaculata was carried on at Champaign, Ill., by Dr. S. A. Forbes,² official entomologist of that State. Through the researches of the two entomologists mentioned and some others much has been gained that leads toward a more complete knowledge of these insects and their modes of life.

THE ARCUATE MAY BEETLE.

(Lachnosterna arcuata Sm.)

Since the publication of Dr. Forbes's reports on these insects the larvae of our common L. arcuata have frequently been sent to this office, and we have been able to identify the species, at least approximately, which, of course, was impossible before that time.

To obtain fresh specimens of the early stages of this species for illustration and study, a number of beetles were captured at the electric lights of Washington City, placed in a jar of earth May 25, 1898, and kept supplied with oak leaves for food. Eggs were not deposited at once, and in fact not until about the beginning of the second week in June, the exact date not having been ascertained. The parent beetles died the following week. The first larvae hatched on the night of June 23, and eggs were still hatching on the mornings of the 24th and 25th.

DESCRIPTIVE.

The following brief descriptions will assist with the illustrations in the recognition of the species in its different stages. It should be remarked, however, that, with the possible exception of that portion of figure 16 lettered f, this illustration will apply almost equally well to all or nearly all of the seven species of Lachnosterna, formerly grouped in collections as fusca, and now included in what is termed, for convenience, the fusca group. The specific differences between arcuata and fusca are brought out in the illustrations of their sexual characters (figs. 17 and 18).

The egg.—The eggs of Lachnosterna are oval when first deposited, but in their growth swell by absorption, as has been pointed out by Dr. Forbes, to a larger size, becoming just before hatching more broadly oval or nearly spherical. The eggs are subject to considerable variation in form and outline. Eggs of L. arcuata, just about to hatch, vary in width from 2 to 2.5 mm, and in length from 2.5 to 3 mm. When newly laid they are nearly white and rather moderately polished, but with their growth they become darker and subopaque. The surface is apparently smooth and without sculpture. In consistency the eggs are quite firm, strong, and elastic. An egg is shown in outline, about three times the natural size, at c, fig. 16.

Comparison of the eggs of Lachnosterna of different species with those of Euphoria and Ligyrus shows a very close agreement in shape, color, and general appearance.
The newly-hatched larva.—The larvae when first hatched have the appearance shown in the illustration at d. From the first they rest in the curved position assumed by the embryo in the egg; and when they attempt to move they do so chiefly by crawling in a clumsy manner upon their venters, and not upon their backs as is the case with Allosrhina and certain other Scarabaeidae. The newly-hatched larva, as would readily be surmised from the variability in the size of the fully developed eggs, vary in size even before they have partaken of food, measuring, if extended, from 6 to 7 mm in length and about 2 mm across the thoracic segments, which are widest. The head is of course very large in proportion to that of the mature larva, being slightly narrower than the thoracic joints. It is white at first but soon turns to the normal color—dark yellowish. The body is at first entirely white, the yellowish red pubescence or short hairs and the finer and longer hairs of the dorsum showing plainly on the body and toward the extremities of the legs. The mandibles are large and prominent, dark brown in color, becoming nearly black on the inner or cutting surfaces. Larvae under observation absorbed some nutriment from the earth in which they were confined, which showed in a few hours through the thin skin of the abdomen.

The mature larva.—The full-grown larva differs but little in essential characters from the younger larva, save in the relative proportions of the head and legs to the body proper. It is best described by the figure (see e). The absence of a large series of larvae of other related species renders inadvisable at this time an attempt at specific description. The arrangement of the hairs on the ventral surface of the last or anal segment, as indicated at f, presents but little difference between this species and fusca as figured by Forbes, which is naturally to be expected when we consider their close relationship.

The pupa.—What is true of the resemblance of the larva of this and related species is even more pronounced in the case of the pupa. No differences between the pupae of the fusca group are known. The pupa of arcuata, illustrated at b, is of the same white color as the larva.

The beetle.—The beetles can not be separated from those of fusca, nor in fact with positive certainty from several other related species, by any tangible and constant characters at present known without examination of the sexual organs or genitalia. The best-marked individuals of fusca have the elytra with the longitudinal ridges more strongly defined than is usual in arcuata; but this character is so variable as to be of no value whatever for specific identification. The external or corneous portions of the genital organs, particularly of the male, present excellent and constant characters. This will readily be appreciated by anyone who has not already had experience with this genus by a comparison of the male claspers of arcuata, shown at a, b, and c of fig. 17, with those of fusca at a, b, and c of fig. 18, together with the male abdominal and female genital structure delineated by d and e, respectively, of the same figures.
The color of all the Lachnosternas of this group is shining, dark, mahogany brown, and the thoracic segments on their ventral surface are clothed with fine, long, silky pubescence.

REARING EXPERIMENTS.

May 13, 1893, a course of experiments looking toward the rearing of this species and of other observations concerning its habits, and the remedies to be used against it, was undertaken at this Department, the work being in charge of Mr. Theo. Pergande, from whose notes the following data have been gathered. At this time individuals of both sexes were placed in boxes containing growing grass, the beetles being supplied with oak branches bearing leaves for their food. Egg laying began June 8 and continued for several days. June 19 the eggs began hatching, thus giving a period of at least eleven days. At a subsequent time an egg period was observed to be thirteen days. Observations were continued, with the result that on August 8, 1895, one larva transformed to pupa and on the 31st to the imago, which gives a pupal period of twenty-three days, or a total period of two years and fifty-one days from the time of the laying of the egg until the issuance of the adult beetle, or nearly three years from the time the egg was laid until the appearance of the adult above ground.

INJURIOUS AND OTHER HABITS OF THE LARVA.

Under this heading will be mentioned injury inflicted by both larvæ and adults of *L. arcuata*.

May 18, 1892, specimens of larvæ of this species were received from Mr. H. Harrison, Leesburg, Loudoun County, Va., with report that they were doing great damage to vegetables, shrubs, and other plants in that vicinity.

October 12, 1893, Mr. Pergande found three imagos at depths of between 12 and 18 inches in dry soil, which he described as "almost as hard as rock." December 21 of the same year large numbers of larvæ were found on the Department of Agriculture grounds during the removal of a pile of compost. They were at a depth of about two feet, and were all active and lively at this time, owing, doubtless, to the warmth of the material in which they were living. As has often been observed by those who have had dealings with these creatures, three different sizes of larvæ were found, indicating, as our observations above go to prove, a period of three years for the species.

May 3, 1894, several hundred of these beetles were brought to this office by Mr. D. H. Rhodes, landscape gardener of the national cemetery at Arlington, with the report that the species was doing very serious injury to maple trees that had just been set out in drives and walks about Fort McPherson, which adjoins the cemetery. They were particularly injurious to sugar maple (*Acer saccharum*). The following year the writer had occasion to visit the same locality about the same season of the year, and then learned that large numbers of
trees had been killed and were being destroyed at that time. Fort McPherson stands at a distance of less than a quarter of a mile from the wooded portion of the cemetery, and is surrounded by freshly plowed and graded grass land, affording the most favorable conditions for the breeding of Lachnosterna. In all there were about 400 trees upon the knoll about the fort. Mr. Rhodes stated that they were first attacked in 1892, and that that year about 200 trees were injured beyond recovery and had to be replaced. The following year injury was such as to necessitate the resetting of 150 trees. The outlook in 1894 was similarly unfavorable. Many of the infested trees showed plainly the ravages of the May beetles, their work being particularly evident toward the tops of certain trees. In very many instances in addition to gouging out portions of the leaves these beetles had amputated the tenderest leaves from the petioles or footstalks. One form of injury particularly noticeable was the gnawing off of the opening leaf buds.

By digging around the soft earth about the base of the worst infested saplings, a considerable number of the beetles were secured. Under one little tree of about two years' growth that was badly defoliated no less than twenty individuals were taken. The beetles were most numerous within a few inches of the base of the tree, and had burrowed beneath the ground to a depth of only a half to an inch in most instances.

June 17, 1896, a number of specimens of the larvae were received from Mr. B. Clark, Perulack, Va., with the report that the species was destructive to the roots of the grapevine in that vicinity.

In 1897 larvae were received from the Franklin Davis Nursery, of Baltimore, Md., with the statement, made under date of May 13, that they were very destructive to strawberry plants, cutting frequently from six to ten plants in one place. June 11 a larva was received from Mr. S. H. Derby, Woodside, Del., who stated that the species was doing much damage to the roots of strawberry. July 15 we received another sending of larvae from the Franklin Davis Nursery Company, all of about two years' growth, with the information that they were playing havoc with strawberry plants. August 5 Hon. George B. Keezell, Keezelltown, Va., sent specimens, with the accompanying statement that they were extremely numerous that year and doing great damage to corn. A letter by the writer in reply, containing a somewhat detailed consideration of the remedial treatment used against "white grubs," was published in the Rockingham Register, of Harrisonburg, Va., for August 27, 1897.

During 1898 the beetles of this species were reported, May 3, to be injurious to young birches in the District of Columbia and to young English walnut trees in the suburbs. May 23 Mr. R. S. Lacey sent specimens, with the information that 110 of the beetles had been captured on a single English walnut on his place near Washington, D.C. They had not troubled either pecans or native walnut trees.
INSECT ENEMIES OF WHITE GRUBS.

Of the insect enemies of white grubs the following parasitic and predaceous species have been observed at this office. Although some of these insects were not observed attacking *L. arcuata*, they are all probable enemies of that species:

Ophion biforeolatum Say, received July 24, 1890, from Mr. F. M. Webster, Lafayette, Ind., with the report that it had issued from a rearing cage in which he had placed a lot of larvae of *Lachnosterna*, probably *fusca*. Dr. Forbes mentions the rearing of the same or a related species under similar circumstances at Champaign, Ill.

Pelecinus polytiurator Dru.—Seen in the act of emerging from its pupal envelope, which had been observed in a grub of *L. gibbosa*, at Champaign, Ill., August 25, 1892, as recorded by Dr. Forbes.

Cryptomeigenia theutis Walk.—In and among the dead bodies of adult *L. inversa* a puparium of this tachinid was found at this office October 28, 1892. May 23 of the following year the fly was reared.

Entrixa masuria Walk. was reared from the adult of *L. arcuata* collected at Washington, the parasite issuing March 12–23, 1895.

Microphthalmus disjuncta Wied. issued October 15, 1891, found in the skin of a larva of *L. arcuata* August 12 by Mr. Pergande at Washington.

The three species of Tachinidæ mentioned are all considered, together with their host relations, in Mr. Coquillett's Revision of the Tachinidæ (Tech. ser. No. 7, Div. Ent.), but it is well to bring these data together in connection with the following observations on egg deposit, which occurs on the external surface of living beetles.

At one of the meetings of the Entomological Society of Washington Dr. Howard exhibited specimens of an adult of *L. fusca* captured by him in June, 1897, in Greene County, N. Y., on the thorax of which were glued the eggs of some species of tachinid fly, probably one of the above or a related species. A specimen of *L. inversa* was received from Dr. H. Shaffer, Keokuk, Iowa, on the thorax of which appeared similar eggs. On another species, *L. micans* Knoch., a single egg was discovered, placed on the middle of an elytron near the suture. This last specimen was received from Mr. R. E. Spivey, Sharon, Miss.

Drasterius elegans Fab.(?)—An elaterid larva, presumably of this species, was received August 26, 1897, from Mr. A. Moxcey, Penn Yan, N. Y., with the statement that it had been found fastened by its mandibles to a grub of *L. arcuata*.

Tetramorium caespitum Linn.—There is also mention in our notes of 17 larvae of *L. arcuata*, which were being used for experimental purposes, falling prey to the household ant above mentioned, which killed and devoured them.
REMEDIES.

As white grubs pass the greater part of their lives underground, often at a considerable depth, it is obviously a matter of difficulty to reach them with insecticides. Gas lime has been suggested for this purpose, and good results have been obtained against certain forms by the use of bisulphide of carbon, kerosene emulsion, and poisoned baits.

The bisulphide and emulsion remedies are, however, too expensive for employment on a large scale. Of poisoned baits the bran-arsenic mash has been used with success against the white grubs of Allorhina nitida by Col. W. Rives, as reported by Dr. L. O. Howard in Bulletin No. 10 (n. s., Div. Ent., pp. 27–28).

Of other remedies are fall plowing, rotation of crops, and the free use of mineral fertilizers, such as nitrate of soda or kainit.

Most domestic as well as many wild animals feed freely upon white grubs, and swine, chickens and turkeys are especially valuable as destroyers of these pests.

In connection with remedies to be employed for the destruction of the grubs, it is also advisable to kill the adult beetles. This may be done by attracting them to strong lights, where they may be gathered and destroyed by crushing or by similar means.

THE SPINACH FLEA-BEETLE.

(Disonycha xanthomelena Dalm.)

A NEW FOOD PLANT.

The unusual abundance in the spring of 1898 of the above-mentioned flea-beetle on the grounds of the Department of Agriculture and elsewhere in the vicinity of the District of Columbia led to its special study, with the resulting discovery of a new food plant and the completion of its life history, already so ably begun by Miss M. E. Murtfeldt while special agent of the Division of Entomology in 1889 (Bui. 22, Div. Ent., pp. 76–78).

Observations began April 16, when a number of the beetles were taken in the vicinity of the leaves of the chickweed, Stellaria media, on the lawn of the Department grounds. Subsequently upward of a score of beetles were captured under a board placed for the purpose over a patch of chickweed, and still later larvae were taken on the same plant and reared to maturity. Oviposition was first observed on the 17th of April, but it probably began somewhat earlier, as this species is one of our first spring visitors, appearing even as far north as central New York as early as the last of March in the first warm days of the season.

The following description of the egg and immature larva will complete our knowledge of the life stages of this species, the mature larva and pupa having previously been described in the article referred to.
DESCRIPTION.

The egg.—The egg is subcylindrical, and regularly elliptical in outline, between two and one-half and three times as long as wide, narrowest toward the apex, where it is subtruncated, widest above the middle, base rounded. Color when newly laid, pale orange buff, changing to somewhat brighter orange later. The surface is rather feebly shining and densely covered with minute pits grouped together so as to form, with the clear spaces between the groups, irregular areas, of which the prevailing pattern is imperfect hexagonal. Between 28 and 31 appears to be the number of rows of areas in the entire length of the egg. Length, 1.25 to 1.50 mm; width, 0.40 to 0.57 mm.

The group of eggs shown enlarged in the figure at b illustrates also the manner of escape of the larva through a hole at one side. The sculpture is shown highly magnified at c.

Eggs that came under observation were deposited usually in groups of from 4 to 30, and in one case as high as 50, on the ground and on bits of leaves resting on the earth, all the eggs being placed on end closely but loosely together in the same hexagonal order observed in the arrangement of the areas of the egg, although naturally this order is less regular.

The larva.—When first hatched, the larva, as may be seen by comparing the figure at e with c, looks quite unlike the mature form. The tubercles which cover the body are somewhat more conspicuous, the head and legs are much larger in proportion, and the spines (see f) protruding from the body are very long, measuring nearly one third that of the body, including the tubercles. The spines are black at the base and nearly white toward their apices, which are capitate, like those of some other species of larvae in the post embryonic stage. The color is nearly uniform light gray, with a slightly pruinose surface, and the head, eyes, sutures of the legs, and certain other portions are darker. The red of some internal portions can be seen through the anterior portion of the body, the thoracic and first abdominal segments. The length, in the somewhat contracted position which the larva assumes in death, is about 1.80 mm; the width, 0.60 mm.

13892—No. 19—6
The mature larva is figured at c. In life it is dull nearly uniform leaden gray in color, with darker head and still darker brown mouthparts. The length is from 8 to 9 mm, and the width 3 to 4 mm.

The pupa.—The pupa is of nearly the same color as the larva, being a little lighter. It is well illustrated at d.

The beetle.—The adult beetle, shown in the illustration at a, is shining black in color, sometimes with a green or bluish luster. The prothorax and abdomen are red in living specimens and reddish yellow in dried material, and portions of the legs and antennae are pale yellowish. This is not apt to be mistaken for any other common species. From its nearest relative, *D. triangularis*, it differs in the absence of the triangle of spots on the prothorax, and from *mellicollis* by the color of its thorax and legs, those of the latter being bright blue or green and yellow respectively. It measures a little less than a quarter of an inch (5.5 mm).

DISTRIBUTION.

The distribution accorded by Dr. Horn, who furnished a more technical description than the above, together with notes, in volume xvi of the Transactions of the American Entomological Society (1889, p. 209), is "from the New England States to Kansas and Florida."

In the collection of the National Museum and that of the writer the species is represented from the following localities:

Fitchburg, Mass., South Woodstock, Conn. (October 20); New York, Ithaca, N. Y.; Newark, Hudson County, and elsewhere in New Jersey; District of Columbia; Jonesville, Fortress Monroe, Rosslyn, Va.; Poolesville and Marshall Hall, Md.; Detroit, Mich.; Kirkwood and elsewhere in Missouri; Nebraska; Kansas; Florida; Columbus, Tex., Bear Paw Mountain, Mont., and Swift Current, British America. It is recorded also from Mount Washington, N. H. (Bowditch); Allegheny, Pa., (Hamilton); Buffalo, N. Y.; Iowa City, Iowa (Wickham), and elsewhere. This includes an area from the Lower Austral through the Transition to the Boreal life zone.

LIFE HISTORY.

Writing of this flea-beetle in her original article, Miss Murtfeldt says:

This species seems to be but single brooded, as no young larvae were to be found after the first of June. As, however, the spinach beds were rooted out before midsummer in all the gardens in the vicinity, I can not be quite certain about this point, but could not discover it on beets or any of the native Chenopodiaceae.

The beetles reared by the writer were kept feeding in confinement, and in time laid eggs, proving that there are two generations produced annually in climates such as that of the District of Columbia.

The duration of the egg stage was observed during hot weather in August. Eggs that were deposited August 11 hatched on the 18th,
and others laid on the 23d produced larvae on the 30th, giving seven days as the minimum period. It will probably be found that this period in cooler weather will be extended to nine or ten days, according to atmospheric conditions at the time that deposition and hatching takes place, and variation being natural in a species where oviposition practically extends throughout a season. Oviposition was actually observed between April 17 and the first day of June, and again in July, beginning on the 22d, and continuing through that month and August.

The escape of the larva from the egg takes place through a simple longitudinal slit on one side, extending from near the base to the center of the egg. (See fig. 19, b.)

Larvae kept under nearly natural conditions were obliged after hatching to travel 2 inches to the stem of the food plant provided them, a potted Chenopodium, and at least 5 inches farther before reaching a leaf. As the larvae grow, the social tendency becomes less noticeable, and individuals may be seen here and there on a plant occupying a single leaf. A larva, as a rule, will remain on a leaf until it is full of holes, the sizes of the holes increasing with the growth of the insect. Generally also the larvae feed on the lower surface of a leaf, but not exclusively.

The gregarious habit of the larva is pronounced from the first. Larvae which hatched in close quarters in confinement gathered in a group on one side of their rearing dish, and another lot which hatched out on cultivated Chenopodium traveled from one leaf to another, seldom being found singly during the early period of their growth.

One lot of ten larvae, which was observed to hatch June 8, was kept rather closely confined and fed at first upon chickweed and afterwards upon spinach leaves. June 18, or in ten days from the hatching of the eggs, about half had attained full growth, and on the 20th all but one had entered the earth for pupation. On the 27th two individuals, which we may call Nos. 1 and 2, were found to have pupated. No. 3 pupated June 28 about 4 p.m., and No. 4 transformed about 11 a.m. of June 29. Nos. 1 and 2 were found to have issued as adult July 5, No. 3 died, and No. 4 transformed to a beetle July 5, being still uncolored when first observed at 9 a.m. This last gives us six days as the duration of the pupal state, probably the minimum period, as the weather was extremely hot, the thermometer out of doors having passed the 100° mark during three days of this time. The first two beetles issued during a two days' closing of the office, but it is certain that the date of issuance was July 3.

It is more than probable, judging from the present experience with this species, that the duration of the larval stage varies considerably according to environment. An attempt to rear larvae, which hatched June 4, on the potted Chenopodium previously mentioned, was not entirely successful, owing to the plant being disturbed. All of the
larvae were much slower in development, leading a somewhat precarious existence in traveling from one leaf to another and in being compelled to share their food with the aphides which infested the same plant. It required till June 30, or twenty-six days, for one of these to attain maturity, and even at this time it was stunted when it entered the earth. It issued as imago July 12, having required about forty-six or forty-seven days in its development from egg to beetle.

On another occasion a colony of the larvae of this insect was found feeding on lambsquarter at Rosslyn, Va., June 19, 1893, about half of them at this time nearly full grown. One of the larvae observed later ceased feeding for a day or two, and July 3 entered the ground, where it remained for several days more before assuming the pupa state. It was still in the larval condition July 7. The imago was formed July 18, but remained in the earth till fully colored and hardened, appearing above ground July 20.

The pupal period in cool weather would probably reach as many as nine days. Thus we would have periods in the life cycle varying as follows: Egg, six to nine days; larva, active period, ten to twenty-six days; inactive period, six to fifteen days; pupa, six to nine days; entire cycle, about thirty to sixty days.

Larvae were first observed to enter the earth for pupation as early as June 8, to transform to pupae on the 14th, issuing as adults two weeks later. Individual beetles, presumably of the old or hibernated generation, were observed, though sparingly, as late as July 20, but as the earliest of the first new generation did not appear till the end of the month, there was no overlapping of generations.

The beetles of the first generation, as previously observed, laid eggs for a second generation, beginning July 22, continuing through August until September 5.

By the middle of September nearly all of the beetles of the first generation were dead.

A female with swollen abdomen was isolated August 24. The next morning she had laid a mass of 35 eggs; next day she had deposited another mass of 34; August 30, a third mass of 36; August 31, 38; a fifth September 5, and was still living September 19. She had deposited in this time about 180 eggs, but it is not known how many she may have laid previous to this.

BIOLOGIC LITERATURE.

The biologic literature of this species is limited. In addition to the record quoted there are two others of the occurrence of this species, that published by Mr. Lawrence Bruner in 1891 (Bul. 23, Div. Ent., p. 15), which reads as follows: "Common on beets and other chenopodiaceous plants, the leaves of which it riddles with holes," and that by the writer the following year in which the occurrence of the beetles on *Amaranthus spinosus* is recorded (Proc. Ent. Soc. Wash., vol. 11, p. 265).
NATURAL ENEMIES.

At least one natural enemy is known for this species. It is the tachina fly, Hypostena barbata Coq., which develops within the abdomen of the adult beetle. It was first recorded by the writer as a parasite of this species (l. c., vol. IV, p. 78). June 15 the puparium was found, which had developed from a larva just escaped from a beetle. June 26 the fly issued, having passed eleven days as a puparium.

REMEDIES.

The arsenites are suggested as the rational remedies for this species, the only drawback to their use being the low growth of the plants infested. Paris green with Bordeaux mixture applied to the under and upper surface of the leaves would serve as a remedy for both adults and larvae. Keeping down the lambsquarter of the vicinity would also prove a measure of value; but this would be a difficult matter with regard to the chickweed.

BIOLLOGIC AND OTHER NOTES ON THE FLEA-BEETLES WHICH ATTACK SOLANACEOUS PLANTS.

In continuation of observations begun in 1897 on the biology of the tobacco flea-beetle (Epitrix parvula Fab.), and published in Bulletin 10 of the present series (pp. 79-82), the following notes on that and other species of the genus are presented.

THE TOBACCO FLEA-BEETLE.

(Epitrix parvula Fab.)

Recent injuries.—July 15, 1898, Mr. Francis Boaler, Huntsville, Madison County, Ark., sent specimens of this species and its work on a leaf of tobacco with the statement that the beetles were destroying tobacco on his plantation. This tobacco was planted on mountain land, sand rock soil, in ground which had been in pasture six years. The land was plowed and then ridged. Our correspondent noticed that the beetles usually stayed on the under surface of the leaves during the daytime and became active about an hour before sundown. They sometimes ate the leaves in such manner as to leave only the ribs and smaller veins. The ground was at this time perfectly free from weeds; but it would seem probable that a large number of solanaceous plants, such as Jamestown weed and nightshade, which we now know to be larval food plants, had grown upon this land or in the immediate vicinity before the tobacco was planted.

Later Mr. Boaler, writing under date of August 10, 1898, stated that the beetles had apparently been destroyed almost totally by heavy and incessant rains. It is not improbable, however, that the weather at this time had driven the beetles into hibernation, perhaps a little prematurely.
July 20 of the same year, in the course of a day's collecting of tobacco insects, Mr. F. C. Pratt found this flea-beetle at College Station, Md., where it was by far the most abundant species, no other insects troubling tobacco in that vicinity. It was reported as slightly injurious the previous year in the same locality (W. G. Johnson, Bul. 9, n. s., Div. Ent., p. 81).

July 29 Mr. T. G. Allen wrote of this species which, in connection with one of the other common species of Epitrix, either *esculentum* or *fuscans*, was injuring the tobacco at and in the vicinity of Skipwith, Mecklenburg County, Va. He stated that for the past five or six years the crop had been very much damaged by these flea-beetles and that they seemed to increase with every year. They were reported to make their appearance from the middle of July to the first of August, attacking first the bottom and afterwards the upper portions of the plant to the topmost leaves. After they have fed upon a leaf for a while it becomes full of small dry spots and then of holes about the size of a pin point. When the leaf is cured it is poor and thin. At the time of writing he stated that he counted as many as 37 beetles on a single leaf.

The life cycle.—A number of beetles were placed, July 21, upon a potted plant of tobacco that had been kept free from the attacks of this species, which had not at that date, so far as observed, put in an appearance in the vicinity of the Insectary. The potted plant was not examined until August 11, and then two pupae and one larva were obtained. The larva transformed to pupa August 12 and to imago on the 18th, which gives twenty-eight days as the full life cycle period, presuming upon the deposition of the eggs upon the first day of the experiment, about which there is no reasonable doubt. The weather was very hot during this period.

Eggs were obtained but did not hatch in confinement. The minimum period is probably the same as that ascertained of the pupa, six days, which would afford by deduction a larval period of sixteen days.

The following is a description of the egg:

The egg.—The egg is of about the same length as that of *E. fuscans*, but is narrower and elliptical-ovate instead of elliptical oval, measuring about two and a half times as long as wide. The color is gray with scarcely a tinge of yellow. Areas similar to *fuscans*, but apparently much more minute, not being visible except under a high magnifying power. Length: 0.40 mm; width: 0.18 mm.

How and where the egg is deposited in nature remains to be discovered.

Food plants.—We have now ascertained three larval food plants, tobacco, *Solanum nigrum*, and *Datura stramonium*, but it is fairly certain that the larva would thrive on any of the Solanaceae. The beetles have been observed to feed on *Solanum esculentum* and *carolinense*, and appear to prefer the leaves of the Jamestown weed among weeds, and tobacco among cultivated plants. In our experimental plat in which
grew tobacco, eggplant, and Jamestown weed, potato and tomato did not appear to be attacked at all by this species. In addition to the records of larvalrearings given above and in the writer's previous article, it should be mentioned that larvae and pupae of this species were taken during the first two weeks of August, and in some numbers, at the roots of *Datura stramonium* at Marshall Hall, Md., and on the grounds of this Department at Washington.

Distribution.—Of the distribution of this species the late Dr. Horn said that it "occurs throughout the entire United States, extending also to the West India Islands." The writer fears that this statement of the distribution is somewhat too comprehensive, as it is well known that it is a southern species, and although it occurs pretty well northward, especially where tobacco is raised, it does not extend as far as the Boreal life zone, and I doubt if it is often found north of the Upper Austral. For the sake of accuracy it may be well to place on record the following list of actual localities from which the species has been recorded or in which it is known to occur:

Chevy Chase, Cabin John, Glen Echo, College Station, Marshall Hall, River View, Poolesville, Md.; Skipwith, Danville, Lynchburg, Woodstock, Rosslyn, Cherry Dale, Va.; District of Columbia; West Virginia; Michigan; Gatewood, Oxford, N.C.; Kentucky; Boyd (injuring tobacco), Columbus (Alwood), Ross County, Ohio; Huntsville, Ark.; Denver, Colo.; Galiuro Mountains, Mont., Chiricahua Mountains, Tucson, and elsewhere in Arizona; Cypress Mills and Burnett County, Tex.; Hau-lover, Capron, New Smyrna, and elsewhere in Florida, and Montserrat, W. I.

It is also recorded from the Bahama Islands; Guatemala; Panama (Champion); Mexico; and Cuba (Crotch).

The above statement of localities indicates this species to be Austral and Tropical. As further corroborating the stated belief that it seldom if ever occurs above the Upper Austral zone it should be said that the species is not represented in Dr. Hamilton's list of the Coleoptera of southwestern Pennsylvania, and does not to the writer's knowledge occur in the State of New York.

A parasitic enemy.—This flea-beetle, as well as *E. cucumeris*, is parasitized while in the adult condition by what is evidently, judging by the larvae, a species of the hymenopterous family Braconidae. Numbers of beetles were collected in order to rear the parasite. Larvae were first observed July 14, but none lived more than a few days after issuing from the beetles. All of the parasitic larvae, as far as could be learned, made their escape from an aperture made at the anal orifice of their host.

THE EGGPLANT FLEA-BEETLE.

(*Epitrix fusca Cr.*)

This flea-beetle was observed during the season of 1898, May 17, in hothouse frames of eggplant at Tennallytown, D. C. May 21 great numbers, as many as eight or ten to a small plant no higher than 3 or 4 inches, were observed on horse nettle at River View, Md. All these
plants were much eaten and had evidently been attacked as early as the first week of May, or soon after their first appearance above ground.

Eggs were laid freely overnight, and the following description was made:

The egg.—Elliptical-oval, a little less than twice as long as wide; moderately shining, yellowish gray; surface divided into very minute irregular areas, somewhat symmetrically, but not always regularly, disposed in groups of seven inclosed in hexagons. Length, 0.40 to 0.42 mm; width, 0.22 to 0.24 mm.

This flea-beetle has received little attention at the hands of economic entomologists, for the obvious reason that it has without doubt been very generally assumed to be identical with the very similar _E. cucumcris_. In our official correspondence it has been reported as injurious but once, and that during the past year. August 3 and 9 Mr. Henry J. Gerling sent specimens of the beetles which were attacking the leaves of eggplant at St. Charles, Mo., the foliage being described as badly eaten.

In a paper entitled “Supplementary report on insects affecting the strawberry,” published by Prof. S. A. Forbes in the Transactions of the Mississippi Valley Horticultural Society for the year 1884 (vol. II, p. 236), this species, mentioned as _Crepidodera fuscula_, is included in a list of flea-beetles that infest the strawberry. No particulars, however, are given beyond a brief description of the adult. The same paragraph on flea-beetles affecting strawberries appears in the same writer’s annual report as State entomologist of Illinois for the year 1883 (1884, p. 86).

The first account of any length which I find concerning this insect is given by Prof. H. Garman in the Second Annual Report of the Kentucky Agricultural Experiment Station (1890, p. 26), where the species is mentioned under the title, “The Potato Flea-beetle, _Crepidodera fuscula_ Crotch.” The statement is made: “Wherever examined last season the potato leaves were found to be gnawed full of small holes, which, from their abundance and from the fact that the edges of the holes became brown after a time, often gave the leaves a diseased brown appearance.” In several fields examined it was impossible to find a leaf entirely free from injury. Nothing of the life history of the species was ascertained, but it was found “that a mixture of lime, sulphate of copper, and water saved the potato from the injuries of this flea-beetle very effectually.”

The same writer under the heading “Bordeaux mixture as an insecticide” (Agricultural Science, vol. vi, p. 126, 1892), again commented upon the efficacy of a spray of Bordeaux mixture as a remedy against this flea-beetle (mentioned as _Crepidodera pubescens_).

Mr. Garman also gives a short account of this species under the title “The Southern Flea-beetle of Potatoes, _Epitrix fuscula_,” in Bulletin 61 of the Kentucky Agricultural Experiment Station, published in 1896 (pp. 15, 16). The ravages of this flea-beetle were observed to be checked by a combination of Paris green and Bordeaux mixture, or by the former applied alone.
The above summarizes practically all that has been published on this species, at least in its economic or biological aspect.

Of its distribution Dr. Horn was at fault in stating that it "seems to be a widely distributed species over the entire country east of the Mississippi, also in Missouri." It appears to have very much the same distribution as the congeneric parvula. According to Mr. Charles Liebeck, it is generally distributed, though rare, in New Jersey. It does not occur in New York State to my knowledge.

In the neighborhood of the District of Columbia it is rather more abundant than either parvula or cucumeris, and although it probably infests all the Solanaceae, it shows, in the writer's experience, a marked fondness for eggplant when this can be obtained, hence the name "eggplant flea beetle," which is here proposed. It is also common on potato, but rather rare on tobacco. I have not found it at all on tomato.

The following list of recorded localities is from specimens in the National Museum and in local collections, or from published records: New Jersey; River View, Marshall Hall. Cabin John, Md.; Tennallytown, Washington, D. C.; Rosslyn, Cherry Dale, Pennington Gap, Va.; Round Knob, N. C.; Marietta, Ohio; Kentucky; Illinois; St. Charles, St. Louis, Mo.; Savannah, Ga.; Bayou Sara, La.; Jackson, Miss.; Nebraska; Kansas; Columbus, Tex.; Los Angeles, Sonoma, and Pomona, Cal.

It is doubtfully recorded from Guanajuato, Mexico (Jacob).

THE CUCUMBER FLEA-BEETLE.

(*Epitrix cucumeris* Harr.)

Owing to the scarcity of material at the time when and in the places where sought, nothing of interest was gained from personal experience with this insect the past year. It is desirable, however, to place on record the following facts concerning it, gleaned from one of our correspondents, Mr. C. Cronk, New Hamburg, N. Y.:

July 22, 1898, he wrote that the beetles and their larvae were very destructive to tomatoes in his vicinity. In response to a request for larvae our correspondent sent, under date of August 5, two minute larvae taken from about the roots of tomato. Although when they were received they were not in fit condition for study, there was no doubt as to their identity, as this is the only flea-beetle of the genus *Epitrix* which is positively known to occur in that latitude, or, in fact, in any portion of New York State.

Adult beetles collected near Washington were parasitized, evidently by the same species mentioned as preying upon *E. parvula*.

"Cucumber flea-beetle" is an obvious misnomer, as anyone knows who has studied the habits of the genus *Epitrix*. The present species, *cucumeris*, so far as we are able to judge, would not live in the larval condition on any other plant than those of the botanical order Solana-
ceae, and the adults, although inclined to be omnivorous at times, are practically confined to this order of plants when such are available. The beetle is illustrated in the accompanying figure.

OTHER SPECIES OF EPITRIX

Of the remaining species of Epitrix, *E. brevis* Sz. has been found by its describer on *Solanum nigrum*. It closely resembles *cucumeris* in color and in its comparatively sparsely punctate thorax. It differs chiefly in its shorter form and feeble aubebasal thoracic impressions. It is evidently rare, being recorded only from Enterprise, Fla., and Columbus, Tex.

The larval habits of *E. lobata* Cr., which is known from North Carolina and Florida, and *E. subcrinita* Lec., which inhabits Oregon, California, Nevada, Utah, and Arizona, are unknown. Both probably feed in their larval stages on Solanaceae; the latter with little doubt does so, as it has been reported to injure young tomato plants, while in the beetle condition it also injures beans. (*Insect Life*, vol. iv, p. 135.)

REMEDIAL TREATMENT.

In addition to the remedies mentioned as of value against the tobacco flea-beetle (*Bul. 10, n. s., p. 82*), namely, pyrethrum mixed with flour or road dust, Bordeaux mixture, and Paris green, combined or alone, it has been suggested by Dr. Howard that the destruction of weeds of the family Solanaceae around the margins of fields and gardens will result in positive benefit in the reduction of the numbers of these flea-beetles as well as of numerous other insects which infest solanaceous crop plants. He suggests, also, the growing of a few clumps of jimson weed or nightshade as trap crops for the beetles, the plants to be thoroughly poisoned in the early summer before the crops are planted or set out. This matter will be treated somewhat at length in a forthcoming article by Dr. Howard, entitled "The principal insects affecting the tobacco plant," in the Yearbook of this Department for 1898. If this is done, and the writer is of the opinion that the jimson weed is the preferable plant, owing to its larger size and apparent greater attractiveness to the flea-beetles as well as other solanaceous feeders, the precaution should be observed to destroy them before seeding time, that they may not prove a pest rather than a benefit.

THE CHERRY LEAF-BEETLE.

(*Galerucella cavicornis* Lec.)

RECENT INJURY.

June 4, 1898, Mr. P. W. Hombach, St. Ignace, Mackinac County, Mich., wrote that this species, specimens of which were inclosed, was found in great numbers on cherry trees, eating holes in the leaves.

Through the kindness of Dr. Sylvester D. Judd, of the Biological Survey of the Department of Agriculture, specimens of the above
mentioned species were received from Mr. M. S. Haslett, who wrote under date of June 5 that this insect was infesting and doing considerable damage to the foliage of young peach trees at Spruce Creek, Huntington County, Pa.

Four days later Mr. Charles A. Heilman wrote from Lebanon, Lebanon County, Pa., sending specimens of the beetle with the statement that they were found abundantly on peach trees, the leaves of which they injure by pitting them full of small holes. Our correspondent had been through a peach orchard 3 miles west of his town and had found only one of the beetles, while in the town the beetles were to be seen by thousands on single trees during the two days previous to his writing.

The past year it was injurious to cherry trees at Corning, N. Y., as reported by Mr. E. P. Felt (Bul. N. Y. St. Mus., vol. V, p. 235; Bul. 17, n. s., Div. Ent., p. 20), and was said by Dr. J. B. Smith to have been found on peach trees in Pennsylvania (l. c., p. 23).

OTHER RECORDS: FOOD HABITS.

The cherry leaf beetle was first noticed causing damage to cultivated cherry trees in 1894 at Bellaire, Mich. (G. C. Davis, Insect Life, vol. VII, p. 200.) The following year it attacked the foliage of cherry trees at Ausable Forks, N. Y. (Lintner, 11th Report, Insects of New York, pp. 197, 198.)

A short illustrated account of this insect is given by Mr. R. H. Pettit in a bulletin entitled Some Insects of the Year in 1897. (Bul. 160, Mich. St. Ag. Coll. Expt. Sta., p. 427.) Specific mention is not made of attack committed that year, but the title would imply that such injury had been noted. In the original case of injury reported, the presence of the insect was also noted on wild cherry in the immediate vicinity.

In the Third Annual Report of the Pennsylvania Department of Agriculture, Division of Forestry, for 1897 (1898), pp. 106, 107, Mr. Charles W. Johnson gives a short account of this species. He says: "Myriads of this beetle and its larvae were observed during the first week of September devouring the leaves of the 'fire cherry' (Prunus pennsylvanica) at Ricketts, Wyoming County, Pa."

There is little doubt that the species described under the name of Galeruca sanguinea in Dr. Packard's Fifth Report on Insects Injurious to Forest and Shade Trees (p. 529) as attacking wild cherry is in reality Galeruca caricollis, as has already been stated. (Insect Life, vol. IV, p. 94.) The species is also mentioned by Dr. Hamilton as occurring on Prunus. (Trans. Amer. Ent. Soc., vol. xxii, p. 371.)

The injurious occurrences are of interest as examples of the change of habit of a species of insect from a wild to a cultivated plant of the same genus (Prunus), and from this to a cultivated plant of a closely related genus (Amygdalus). Until 1894 it will be noted no other food plant of the species other than wild cherry was known, and until the
past season peach was unknown as a host plant. That it prefers the cultivated to the wild plant appears to be assured by recent observations, and there seems little doubt that as fruit growers become more familiar with entomology more instances of injury will come to light.

The beetles are recorded to feed in June and September, the first beetles seen representing the hibernated generation; those appearing in the fall consisting of their progeny, since there is little doubt that the species is single brooded. It is probable, judging from the date of our correspondence, that the beetles appear sometimes in May in their southern range and continue until July at least in more northern localities, since beetles were observed by Dr. Lintner's correspondent as late as July 10.

The reported occurrence of the species on chestnut is hardly of sufficient value to carry much weight as the statement quoted by Lintner from one of his correspondents was not supported by specimens.

Wild cherry it seems probable is a natural food plant. Larvae are known to occur on cherry and probably also feed on peach leaves, but were not said to do so by our correspondents.

DESCRIPTION AND DISTRIBUTION.

This species, as its generic name indicates, is a near relative of the imported elm leaf beetle. It is smaller than the latter, measuring less than one-quarter of an inch in length (4.5 to 5.5 mm); is bright red in color, with the antennae, eyes, and the exterior portion of the legs black. From *G. rufosanguinea*, which this species very closely resembles, it may be distinguished by its coarser punctuation, the punctures with distinct intervals and its more shining surface. It was first described by LeConte in 1865 (Proc. Acad. Nat. Sci. Phila., 1865, p. 216) under the genus Galeruca, and afterwards and until recently was classified under Adimonia. A technical description will also be found in Dr. Horn's paper on the Galernuciini of Boreal America (Trans. Am. Ent. Soc., vol. xx, p. 76), published in 1893. It is there stated to occur from Canada to the New England and Middle States westward to Wisconsin, and is stated on the authority of LeConte to be found also in North Carolina, the type locality. The following list includes more exact localities from recorded notes and from specimens in the National Museum and other local collections: Berlin Falls, Mount Washington, Mount Adams, N. H.; Cambridge, Mansfield, Mass.; Corning, Ithaca, Ausable Forks, Catskill, N. Y.; Hartford, Conn.; Spruce Creek, Lebanon. Ricketts, Allegheny (vicinity), and elsewhere in Pennsylvania; Woodstock, Va. (Pratt); St. Ignace, Bellaire, Mich.: Texas; Vancouver, B. C.

From beetles received from Mr. Heilman June 15 eggs were obtained from which the following description has been drawn:

The egg.—The egg at first sight is wholly unlike that of the congeneric imported elm leaf-beetle (*G. luteola*), being of an entirely different form.
THE PLUM LEAF-BEETLE.

It is oval, of somewhat variable proportions, the width being about five-sixths of the length. Color bright stramineous. Surface deeply pitted with minute, deep and distinct, rather irregular hexagonal areas, symmetrically arranged in sevens, inclosed within a hexagonal area. Length, 0.65 to 0.70 mm; width, 0.50 to 0.60 mm.

The first egg hatched June 26, eleven days from the date of laying, a period a day or two longer perhaps than normal.

The following description of the larva was made by Mr. Davis from specimens received July 10:

The larva.—About 5 mm long, not very broad, and tapering posteriorly. Head, legs, pronotum, and terminal plate black in all the specimens except one which was larger, and these parts in that one are reddish brown. On the dorsum of each segment are two transverse rectangular parallel dark spots, with two or more smaller ones on the sides at the end of the large ones, and beneath these is a longitudinal block on each segment. The venter of each abdominal segment is marked with five dark-brown spots, the central one being largest.

REMEDIES.

An efficient remedy for the cherry leaf-beetle will be found in the use of an arsenical spray, as described for use against the congeneric imported elm leaf-beetle (see Circular No. 8, 2d ser., Div. Ent., pp. 3 and 4).

NOTES ON THE PLUM AND THE ROSE LEAF-BEETLES.

THE PLUM LEAF-BEETLE.

(Nodonota tristis Ol.)

During the first week of July, 1897, this leaf-beetle was observed at Colonial Beach, Va., in considerable abundance, devouring the leaves of plum trees, particularly young plants that were already suffering from the ravages of the pear slug, *Eriocampoides limacina* Retz. (*Selandra cerasi* Peck.). The beetles were also observed in nearly equal abundance on the foliage of the peach, and in less numbers devouring the leaves of apple. They occurred still less abundantly on cherry and choke-cherry (*Amelanchier canadensis*). Wild roses, which are the favorite food plant of the congeneric *N. puncticollis*, were still in bloom at this time, but were not attractive to the insects. A few beetles were beaten from blackberry and dewberry bushes and from wild grapevine, but it could not be ascertained if they were feeding on these plants. By the third week in July the beetles had disappeared at this place. August 2, however, a single straggler was picked up at Marshall Hall, Md. The earliest appearance of the beetle noted was at the latter locality June 18, 1898.

A search through the biologic material in the National Museum collection shows that the species mentioned by Dr. Riley in the report of this Department for 1884 (p. 336) as "Colaspis tristis" is in all probability *Nodonota tristis*, as there are specimens in this collection labeled
“On willow,” from central Missouri. There is in the same series a specimen from Mr. P. Pederssen, collected at Huntingdon Valley, Pa., on peach, and a series also taken by Mr. W. H. Ashmead at Utica, Miss., in August, with the note that the beetles, together with two other species of Chrysomelidae, “gnaw little irregular holes through the outer covering of the blossoms, and frequently gnaw into the epidermis of the bolls, thus exposing them to the weather and causing them to drop.” (Insect Life, vol. vii. p. 247.)

The species mentioned by Walsh in volume 1 of the American Entomologist (p. 12) under the name of “Colaspis, n. sp.,” described as “a roundish leaf-beetle, about one-eighth inch long, generally of a steel-blue color, but occasionally verging upon brassy brown,” and which was beaten from the plum at Alton, Ill., June 19, will now, I think, be considered to be not puncticollis, but the true tristis.

The name “plum leaf-beetle” is proposed for this species to distinguish it from puncticollis, the rose leaf-beetle.

From puncticollis this species is to be distinguished by its much shorter, oval form, simple punctuation of the thorax, and the absence of a postumbonal costa. The prevailing color of beetles taken in Virginia and farther north is shining dark metallic blue, with the legs and antennae yellow or castaneous. The same colors are represented in individuals from the Southern States, with the addition of a number of variations of the dorsal surface, which include metallic green, bronze, purplish and very dark brown.

Dr. Horn credits this species with a distribution “from the Middle States to Kansas, southward to North Carolina.” In the National Museum collection and that of the writer are specimens from Fitchburg, Mass.; Detroit, Grand Lodge, Mich.; Washington, D. C.; Marshall Hall, Riverside, Md.; Colonial Beach, Rosslyn (June 26), Pennington Gap, Va.; Fort Pendleton, W. Va.; Round Knob, Retreat, N. C.; central Missouri; Huntingdon Valley, Pa.; Shreveport, La.; Cypress Mills, Dallas, Columbus, Tex. (May 18 to July 5), La Veta, Colo. and Arizona. It will be seen that it inhabits alike the Upper and Lower Austral life zones.

Undoubtedly the larvae live, like other Eumolpini, upon roots, and it is probable that they may be found upon the rootlets of plum and other fruit trees. The beetles, it was noticed, have a habit of concealing themselves in the folds of leaves.

During July of 1897 many beetles were kept confined with leaves of peach, upon which they fed freely; but no eggs were deposited, and nothing whatever was positively learned of the early life economy of the species.

In 1898 the same negative experience was had with a lot of beetles until July 16, when three of them—the only ones left—were isolated, with the result that a mass of 36 eggs was obtained, laid side by side in the fold of a leaf and in irregular rows, in the same manner as observed with certain other Eumolpini when in confinement.
The egg.—The egg is elongate ovate, one side sometimes strongly curved, the opposite with a tendency to straightness except toward the ends. Color, shining dirty whitish gray, not yellowish; surface without sculpture. Length, 0.75 to 0.84\(^{mm}\); width, 0.32 to 0.34\(^{mm}\).

Eggs that were deposited July 18 hatched on the 25th, giving a period of seven days, which represents nearly the minimum, as the temperature averaged about 86\(^{\circ}\) F. at this time.

THE ROSE LEAF-BEETLE.

(Nodonota puncticollis Say.)

June 4, 1897, Mr. Robert McLean, Baltimore, Md., sent specimens of this species which he reported to be "causing some destruction to several trees" in his garden in the country near there. The beetles were said to be "consuming all the leaves from the trees." No particular trees were specified, but they were presumably fruit trees.

This insect was also injurious in at least one locality that year near Washington. It was stated by the late Mr. G. H. Hicks to be very troublesome on roses at Kensington, Md.

June 4, 1898, beetles were found in abundance on the young terminal leaves of ornamental willow at Tennallytown, D. C., being at this time more numerous on this tree than upon blackberry in the immediate vicinity.

Previous efforts to obtain the eggs of this genus, as already mentioned, failed in spite of the best conditions that could be secured.

June 9 Mr. F. C. Pratt obtained, at the writer's request, a large series of this species on the occasion of a trip to Woodstock, Va., from which eggs were secured later. It was extremely abundant at that place on blackberry as well as on wild rose.

Eggs were deposited June 12, in one instance in a mass of 19, placed side by side in the same manner as in *N. tristis*. From the eggs of that species they differed in no observable way. The average measurement was 0.80\(^{mm}\) long and 0.30\(^{mm}\) wide.

Among the beetles received from Woodstock, Va., one was noted on the under surface of which was a larval mite which has been identified by Mr. Nathan Banks as *Eupalpus echinatus* Bks.

REMEDIES.

These leaf-beetles are amenable to the same treatment as the cherry leaf-beetle and imported elm leaf-beetle. As they do not fly quickly, it is easy to capture them by jarring them onto inverted umbrellas or other similar specially prepared appliances saturated with kerosene.

Note.—*Nodonota clypealis* Horn has been noticed in July and early August in great abundance in Maryland near the District line on the fresh terminal leaves of *Actinomeris squarrosa* growing on high land as well as on *Ambrosia trifida* on river bottom, as previously reported.
NOTES ON THE FRUIT-TREE BARK-BEETLE AND OTHER BORERS AFFECTING FRUIT TREES.

Since the publication of Circular No. 29, second series, on the fruit-tree bark-beetle (*Scolytus rugulosus* Ratz.), a few notes have been gathered from correspondence and from personal observation which will be here recorded.

These notes corroborate statements made in the circular in regard to the parent beetles choosing diseased trees by preference for oviposition, as also statements that beetles will attack healthy trees, add some new food plants to the known list already published, and demonstrate the efficacy of kerosene when rubbed upon infested trunks and branches as a remedy for the beetles. Certain other facts are also mentioned.

Certain other fruit-tree borers have also come under observation and will be briefly mentioned.

THE FRUIT-TREE BARK-BEETLE.

(*Scolytus rugulosus* Ratz.)

May 16, 1898, Prof. E. A. Popenoe wrote from Topeka, Kans., that in a search for trees attacked by this species in different portions of Kansas many rows of trees were examined, and in nearly every tree affected the top was blighted or a stump remained whence a blighted branch had been cut. Beetles were also noticed in pear trees whose leaves were colored so as to indicate ill health and were found to be also diseased at the root below the budding point. Many of the diseased trees showed the beetles just beginning work, precluding the possibility of the appearance of disease resulting from the beetle attack. The conclusion was reached that the diseased trees were preferred by the *Scolytus* as a place of oviposition. In a few trees, however, the beetles were found at work where there was no sign whatever of ill health in the tree attacked, thus corroborating statements of like nature previously made by the writer.

Mr. Ernest Walker, of Clemson College, S. C., wrote May 18 that this species was doing damage on *Prunus simini* and Japanese plums.

Mr. J. C. Andrus, Manchester, Scott County, Ill., stated in a letter dated May 15 that in his experience this species attacks mountain ash and Juneberry (*Amelanchier canadensis*), both new food plants for this country, and the latter unrecorded.

In response to inquiry in regard to remedies, Mr. C. C. Beals, of New London, Howard County, Ind., wrote under date of August 23 that this insect made its appearance at that place about the middle of July, peppering the bark of the cherry trees with holes and running about over the bark. In two or three days after the first noticed appearance a tree was sprayed with kerosene, but this had no apparent effect. The kerosene was then rubbed upon the trunk and larger branches
with the result that all the beetles were killed. At the time of writing the tree was doing well. Writing again October 25, Mr. Beals stated that although the kerosene killed all the insects with which it came in contact, the experiment was not an entire success for the reason that the smaller branches and twigs were not treated.

As still further corroboration of the statements previously made, that this species will attack healthy trees, the writer observed during the season of 1898 in the same orchard mentioned in the footnote on page 3 of the circular, a perfectly healthy apple tree, which had been attacked evidently several years previously, judging from the nearly obsolete scars on the trunk. Specimens of the beetle, dead in two or three of the burrows, showed beyond doubt that this was the species concerned, were it possible to mistake its work for that of any other known Scolytid. The apple tree had entirely recovered from attack.

The peach tree mentioned in the same footnote as apparently perfectly sound except for the attack of the beetles was again attacked last fall, and will be kept under observation, as it is probable that it will not be able to survive more than one or two years under the circumstances. The particular place selected by the beetles for their principal attack in 1897 showed the presence of "sun scald" early in the succeeding summer. Later this space, which was on the main part of the trunk, was found to be badly infested with the peach borer (Saninia exitiosa). Some of the smaller branches had attracted another well-known borer of the peach, Phlaeotribus liminaris Harr., and the tree now shows the effect of attack, although no beetles have yet bred from any except one dead branch.

The presence of this bark-beetle in trees infested by the San Jose scale, as mentioned on page 2 of the circular, was again noticed the present year, but Messrs. W. G. Johnson and F. M. Webster have both informed me that this is unusual.

Chiropachys colon Linn., the most abundant and destructive parasitic enemy of this bark-beetle, was noticed abroad the past year as early as April 9.

THE BANDED HICKORY BORER.

Chion cinctus Dru.

A Cerambycid larva, unknown to the writer, was observed at Colonial Beach, Va., in 1897, at work in branches of plum infested also by *Scolytus rugulosus*. It was reared, and proved to be *Chion cinctus*. This is, I believe, the first instance of this species being found attacking orchard trees. Among divisional notes it is recorded that larvae were received at this Department in September, 1880, from Mr. J. T. de Jarrett, Latonton, Putnam County, Ga., with the report that the species was doing damage to all kinds of oaks.

13892—No. 19—7
THE GRAPE CANE-BORER.

(Anoplocerus bicaudatus Say.)

This well-known species, which is also called the apple twig-borer, has recently come to the front as an enemy of stored lumber, and, although only a single instance of injury appears to be known, the character of the damage, owing to the large size of the insect and the length of its burrows, is most striking, and sufficient to stigmatize this beetle as one of the foremost of troublesome species when once it obtains access to a lumber yard.

August 27, 1897, Mr. W. A. Wimsatt, of Washington City, brought to this office specimens of the beetles, with the report that they were injuring ash wood in his lumber yard. He later brought, by request, a small board in which the beetles were boring. In a space in this board 3½ inches long by five-eighths of an inch wide no less than 11 burrows of this beetle appeared. In two instances a beetle had excavated a burrow partly within one board and partly in another, injuring both. One beetle was still alive and active in one piece as late as November 15, and the following spring half a dozen more beetles issued. Neither larvae nor pupae were found, and it is uncertain as to whether or not the beetles which issued from the wood bred therefrom.

Mr. Thomas A. Williams, of the Division of Agrostology of this Department, and an entomologist of some experience, informs me that in the winter of 1892-93 he received from a farmer in the northern part of South Dakota some twigs of apple and green ash (Fraxinus viridis) showing the characteristic borings of this insect, and also some of the mature beetles which had been taken in the holes. To be positive that the same insect was working in both plants, Mr. Williams wrote for more material, to be sent in separate packages, as well as for data regarding the extent of injury in each case. In the second lot of material which he received, an abundance of borers were found, and he satisfied himself as to the identity of the insect in each case. The borers worked in the ash in exactly the same manner as in the apple. According to the farmer the insects first appeared in a small apple orchard, and after practically ruining the trees transferred their attention to the green ash on his tree claim, and did a great deal of damage. The twigs sent were very badly infested, showing evidence of the presence of great numbers of the insect. During the years mentioned, as also in 1894 and to a less extent in 1895, borers of the same kind did a great deal of damage in the Northwest, the conditions being evidently favorable for their increase, drought lessening the vitality of the trees and rendering them more susceptible to the ravages of the insect.

THE EYE-SPOTTED APPLE-TWIG BORER.

(Oberea ocellata Hald.)

Since the first recorded injury by this species to fruit trees, in an article by Miss M. E. Murtfeldt, in the report of this Department for the year 1888 (pp. 137, 138), the insect has attracted more or less attention by its occurrence on fruit trees, and has been the subject of corre-
THE EYE-SPOTTED APPLE-TWIG BORER.

response every year or two. Singularly enough, however, nothing seems to have been published concerning it except in the article referred to, although mention has been made of this, or what is probably this, species in at least one other publication.

During the season of 1898 we received specimens from Mr. G. A. Schattenberg, Boerne, Tex., with the report that the species was found in great abundance in the tips of branches of peach and plum trees. It had never occurred in pear there and seldom in apple. It was also received from Mr. G. Hillje, from Delhi and String Prairie, Tex., with report that it was injurious to peach trees in the first-mentioned locality and to peach and plum near the latter place.

Larvae of what appeared to be the same insect were received from Mr. W. B. K. Johnson, Allentown, Pa., where they were found in the small limbs of apple. It is not positively known if this species is injurious so far North as Allentown, hence we are anxious to obtain material from Northern localities, that the species may be reared to the adult.

From earlier correspondence it appears that this species affects, in addition to apple, peach and plum, pear and poison sumac.

REMEDIES.

Nothing new has developed in the line of remedial treatment to be observed against any of these borers. Opportunity has been afforded for the testing of bisulphide of carbon against one species of borer, and the matter will receive mention in some future publication of this Division.